
Modeling and Testing a Family of Surgical Robots:
An Experience Report

Niloofar Mansoor∗
Dept of Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0115
nmansoor@cse.unl.edu

Jonathan A. Saddler∗
Dept of Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0115
jsaddle@cse.unl.edu

Bruno Silva
Dept of Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0115
bsilva@cse.unl.edu

Hamid Bagheri
Dept of Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0115
hbagheri@cse.unl.edu

Myra B. Cohen
Dept of Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0115
myra@cse.unl.edu

Shane Farritor
Dept of Mechanical & Materials

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0526
sfarritor@unl.edu

ABSTRACT
Safety-critical applications often use dependability cases to vali-
date that specified properties are invariant, or to demonstrate a
counter example showing how that property might be violated.
However, most dependability cases are written with a single prod-
uct in mind. At the same time, software product lines (families
of related software products) have been studied with the goal of
modeling variability and commonality, and building family based
techniques for both analysis and testing. However, there has been
little work on building an end to end dependability case for a soft-
ware product line (where a property is modeled, a counter example
is found and then validated as a true positive via testing), and none
that we know of in an emerging safety-critical domain, that of
robotic surgery. In this paper, we study a family of surgical robots,
that combine hardware and software, and are highly configurable,
representing over 1300 unique robots. At the same time, they are
considered safety-critical and should have associated dependability
cases. We perform a case study to understand how we can bring
together lightweight formal analysis, feature modeling, and testing
to provide an end to end pipeline to find potential violations of im-
portant safety properties. In the process, we learned that there are
some interesting and open challenges for the research community,
which if solved will lead towards more dependable safety-critical
cyber-physical systems.

CCS CONCEPTS
• Software and its engineering → Software defect analysis;
Formal software verification;Model-driven software engineering;
∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275534

KEYWORDS
software product lines, Alloy, testing and analysis, cyber-physical
systems
ACM Reference Format:
Niloofar Mansoor, Jonathan A. Saddler, Bruno Silva, Hamid Bagheri, Myra
B. Cohen, and Shane Farritor. 2018. Modeling and Testing a Family of
Surgical Robots: An Experience Report. In Proceedings of the 26th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’18), November 4–9, 2018,
Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3236024.3275534

1 INTRODUCTION
Modern surgery is moving towards the cyber-physical, using robots,
controlled by surgeons from a console. These systems have tightly
interwoven hardware-software controls with the hardware impact-
ing which software is selected, and the software constraining the
limits of the hardware. These robots can be configured in multiple
ways, for different types of surgeries and can use different physical
and virtual components. For instance, they can perform dissections,
cautery, or sew an entry wound closed. They can be used for gen-
eral, cardiac and/or gynecologic surgeries and on different types
of patients. In essence, such systems can be viewed as a family
of robots (i.e. a software product line) leading to hundreds if not
thousands of possible configurations that may be used by a surgeon
to satisfy his or her personal preferences. Yet, these systems are
also safety-critical, and if they do not interact in a reliable and safe
manner with the end user (the surgeon), this can lead to potentially
severe consequences.

Current approaches to assuring safety-critical systems in-
clude using model-based techniques [5], formal methods [11, 13],
architecture-based safety analysis [15], and techniques based on
real world types and type checking [16]. The majority of these
approaches, however, are subject to a common limitation: they are
intended to ensure safety in a single system, but fail to be cognizant
of the commonality and variability in the system, i.e., ensuring the
dependability of a highly configurable safety-critical cyber-physical
system. Other research has examined testing cyber-physical prod-
uct lines [8]; however, that work does not address the safety-critical

785

https://doi.org/10.1145/3236024.3275534
https://doi.org/10.1145/3236024.3275534
https://doi.org/10.1145/3236024.3275534
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3236024.3275534&domain=pdf&date_stamp=2018-10-26

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mansoor, Saddler, Silva, Bagheri, Cohen, Farritor

Figure 1: System components involved in arm movement.

aspects of the system. There has also been research on test gen-
eration for product lines using lightweight formal analyzers such
as Alloy [7]; however, this thread of work again does not address
safety-critical properties of the system. Last, Proctor et al. proposed
an architecture description language extension for AADL for con-
nected medical devices. This can reason about medical apps in
general[14]; however, it does not directly provide support for our
use case, dependability cases for families of safety-critical devices,
such as surgical robots.

In this paper, we set out to understand the challenges and feasibil-
ity of assuring the safety of cyber-physical product lines. We use an
open-source highly configurable research prototype for a miniature
surgical robot, that formed the foundations for a commercialized
product (in a proprietary format), currently under FDA approval.
With its open source software, this family of surgical robot sys-
tems provides a valuable learning playground for us to explore.
Motivated by the surgical robot family, we present an approach to
ensuring the safety of a system family by constructing both feature
and formal models and performing an automated analysis of the
models, followed by a guided, yet narrowly scoped, testing phase on
concrete family instances. Two essential elements that distinguish
our approach from prior efforts at safety analysis are as follows:

• Family-level reasoning: By identifying commonality and
variability in the system and explicitly modeling them in
analyzable specification languages, we are able to perform
family-wide reasoning that would be difficult to achieve
using static analysis or testing. For example, our analysis
can explore all possible systems in which a particular type
of robot arm is being installed and check whether the use
of that robot arm along with any other software/hardware
components can lead to a violation of a safety property.

• Guided testing on concrete instances: While rigorous
and exhaustive analyses of a formal, yet abstract, model of
the system family can help pinpoint potential property vi-
olations, one more step is needed to confirm the identified
violations are indeed realistic. In particular, we support the
formal analysis with targeted testing of the concrete system
to verify whether the identified property violation can re-
sult in practical issues. The counter examples produced by
the formal reasoning are leveraged at this step to guide the
testing on concrete family instances.

The contributions of this work are (1) an end-to-end case study
to validate an important physical property for a family of sur-
gical robots; (2) demonstration of a potential synergy between

a lightweight formal approach and feature modeling techniques
for a safety analysis of a family of a surgical robots; (3) a set of
lessons learned and discussion of future directions for assuring
cyber-physical product lines.

In the next section, we present the family of robots followed by
our dependability case (Section 3). We then discuss our findings in
Section 4 and end with conclusions and future work.

2 OVERVIEW OF THE SURGICAL ROBOTS
FAMILY

The Advanced Surgical Technologies Laboratory at the University
of Nebraska-Lincoln (UNL) is one of only a handful of institutes in
the world developing in vivo surgical devices. The latest develop-
ments include miniature in vivo surgical robots for use in robotic
laparo-endoscopic single-site (R-LESS) surgery procedures [3, 9].
These miniature surgical robots are small, do not need a dedicated
customized surgical suite or infrastructure, have reusable dispos-
able tools that are familiar to surgeons, and can be operated locally
or remotely from a small console that includes haptic feedback and
a screen that virtualizes robotic positioning.

The robots that have been developed include multiple modules
and plugins for different types of hardware control. This includes
different robot arms, some of which have haptic feedback, and some
that do not. Different solvers control the physical movements of
the arms, tool position tracking, simulation, video, voice communi-
cation, etc. The source code that controls the physical aspects of
the robot includes both a physical and simulation environment. It
is written in C# and is available as open-source [4]. We show the
overall architecture of the robot system in Figure 1.

Physical Components: The primary device that is given to the
surgeons to control the robot arm movements is a Geomagic Touch
Device. There can be either one or two of these devices, depending
on the number of robot arms. Touch is a motorized device that
applies force feedback to the user’s hand, allowing the surgeon to
feel virtual objects and producing true to life touch sensations as
the user manipulates the 3D objects on the screen [1].

The programmable pedals are assigned to clutch and home po-
sition functions to enable/disable these functions in the control
software. The robot arm is the other physical component of the sys-
tem, which has a number of motor controllers to which the software
layer sends serial data to move the robotic arm. Each robot arm can
have a number of joints, and each joint has an angle limit. Each
robot arm is also connected to an end effector that can perform

786

Modeling and Testing a Family of Surgical Robots: An Experience Report ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Physical
Robots

Alloy Model

Feature
Model

Counter
Examples

Software
Layer

Set of
Products Simulation Physical

TESTING

FM slice
Inform

Static
Analysis

Reverse
Engineer

Bounded
Verification

Test Case
Generation

Figure 2: Overview of our Process

a specific task in surgery, such as shears for cutting or a cautery
hook for use after cutting.

Software components: The Geomagic Touch software compo-
nent provides a connection between the physical Geomagic Touch
device and the software system. The system receives its coordinates
from the Geomagic Touch endpoint and sends the coordinates to
other components.

The Kinematics software component contains a set of kinematic
models, which are specific to the hardware being used (i.e. the arm).
They use inverse kinematic solvers for different arms of the robots.
The solvers receive the coordinates from the RobotApp component,
and calculate the joint angles for each joint of the robot arm, and
send them back to the RobotApp component.

The RobotApp component, which contains a set of plugins, em-
ploys the Model-View-View-Model pattern. The use of this pattern
facilitates the separation of the development of the graphical layout
of the user interface from the development for the back-end logic
of the application. A set of plugins are loaded when the software is
used so that the robotic arms can be controlled.

The other components also interact with a set of plugins. For
instance, the Geomagic Touch software component interacts with
theGeomagicTouch plugin, which facilitates sending the coordinates
to the other plugins, such as a Solver plugin. A solver plugin sends
the coordinates to the correct solver for a chosen robot arm while
receiving the joint angles from the Kinematics component. There
are also other plugins in the system that manipulate the input in
other different ways. Some of the plugins are necessary, such as
Clutch and HomePosition, and some of them are only loaded for
specific states or actions, such as GrasperLimits.

The Robot Control component is used to abstract a specific set of
motors, control modules, and robot-specific parameters. It handles
control and data services to discover, control, configure, and read
motor control modules. The Communication component provides
a mechanism that facilitates the robot-computer communication,
supporting serial communication and sending the robot commands
as serial data to the robot.

3 BUILDING A DEPENDABILITY CASE
We set out to build a dependability case for the family of robots
with the aim of understanding the feasibility and challenges.

We selected a critical property of one specific safety feature of
the robot that is important in practice. It is a property that ensures
the safety of the patient by guaranteeing the surgeon is always
aware of the position of the arm within the patient. If violated, the
implications are twofold. First, it means that the arm may extend
into unsafe regions of the patient cavity. Second, if the arm is
extended to its maximum position and torque continues, this could

potentially lead to a hardware failure. We do not specify the manner
in which the surgeon is notified (i.e. via haptic feedback or via visual
messaging). More specifically the property being enforced is:

Arm movement safety property: During the surgery proce-
dure, as the surgeon moves the control device, the actual position of
the robot arm should be the same position that the surgeon articulates
in the control workspace and he/she should be notified if the arm is
pushed outside of its physical range.

This property is enforced by a robot controller system, consisting
of hardware and software components, which monitors and drives
the system’s physical components. Our dependability case spans
the controller system as well as the physical modules involved in
the arm movement.
3.1 Process
Figure 2 shows an overview of the process that we used to build
our dependability case. We incorporate both a lightweight formal
analysis using Alloy. At the same time, we reverse engineered a
feature model and superimposed these two together to identify sets
of products that potentially violate the specified property. We then
applied testing using the simulator (we did not implement physical
hardware testing at this stage) to validate the counter examples
found using the Alloy models. The last step would be to instantiate
and validate these test cases on the physical system. We leave that
as future work.
Alloy Models. We now describe a formal model for the surgical
robots family in Alloy [6], a lightweight formal specification lan-
guage based on a first-order relational logic, with an analysis engine
that performs bounded verification of models. There are three main
reasons that motivate our choice of Alloy for this study. First, its
flexible core, backed with logical and relational operators, makes Al-
loy an appropriate language for declarative specification of systems
and properties to be checked (i.e., assertions). Second, its effective
module system allows us to split the overall, complicated family
model among several tractable modules. Such a well-structured
module system not only facilitates modeling and integrating differ-
ent aspects of the system, but also enables compositional analysis
of the system components. Third, its backend analysis engine, i.e.,
the Alloy Analyzer, provides an automated analysis for checking
assertions and generating counter examples.

To carry out the analysis, we start by defining a common Al-
loy module that models the fundamentals for the family of sur-
gical robots and the constraints that every family instance must
obey. Technically speaking, this module can be considered as a
meta-model for the family of surgical robots. Listing 1 partially
outlines the meta-model module. The complete version of all Alloy
models that appear in this paper are available at the project web-
site [12]. The essential element types are defined as top-level Alloy

787

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mansoor, Saddler, Silva, Bagheri, Cohen, Farritor

1 abs t rac t s ig GeomagicTouch {
2 i npu t : one Coord ina te ,
3 f o r c e : Hapt i cFeedback ,
4 }
5 abs t rac t s ig RobotApp {
6 i n c l u d e s : some P lug in
7 }
8 abs t rac t s ig Robo tCon t ro l {
9 ou tpu t : se t ArmAngle
10 }
11 abs t rac t s ig So l v e r F am i l y {
12 c a l l s : one Kinemat icModel
13 }
14 abs t rac t s ig Kinemat icModel {
15 s o l v e r R e s u l t : Coo rd ina t e −> ArmAngle
16 }
17 abs t rac t s ig ArmAngle { }
18 abs t rac t s ig Coord ina t e { }
19 abs t rac t s ig ArmType {
20 a n g l e l i m i t : se t ArmAngle , / / s e t of a l l the arm angles that are

l e s s than l imi t
21 i n v e r s eKSo l v e r : one Kinemat icModel
22 }
23 abs t rac t s ig RobotArm {
24 arms ide : one S ide ,
25 armModel : one ArmType ,
26 e f f e c t o r T yp e : one E f f e c t o rType
27 }
28 / / outputs should be in the range of solverResul t
29 f a c t Outpu tCons t r a i n t {
30 a l l o : Robo tCon t ro l . ou tpu t | one a : getArmAngle [Kinemat icModel

, Coo rd ina t e] | o = a
31 }
32 / / return the angles produced from a spe c i f i c coordinate
33 fun getArmAngle [s : Kinemat icModel , c : Coord ina t e] : one ArmAngle

{
34 s . s o l v e r R e s u l t [c]
35 }
36 / / for each coordinate , there ex i s t s a se t of angle in the

solver re su l t
37 f a c t Ang l eCa l c u l a t i o n {
38 a l l c : Coo rd ina t e | some a : ArmAngle , s : K inemat icModel | c−>a

in s . s o l v e r R e s u l t
39 }

Listing 1: Excerpts from an Alloy specification for the
family of surgical robots.

signatures: GeomagicTouch, SolverFamily, RobotControl, Kinemat-
icModel, ArmAngle, Coordinate, ArmType, RobotArm. Note that
these signatures are defined as abstract, meaning that they cannot
have an instance object without explicitly extending them. Con-
tainment relations (e.g., between GeomagicTouch and Coordinate)
are defined as Alloy relations. The fact OutputConstraint specifies
that the RobotControl output ArmAngles should be produced by a
solver in the system, and the fact AngleCalculation specifies that
the solver transforms each coordinate to a set of arm angles. To
create individual family instances, we extract information about
each specific system and extend its corresponding element type in
the meta-model.

We then state the property that the model is expected to satisfy
as an Alloy assertion. This property is formally specified as Alloy
assertion ArmAngleCorrect in Listing 2. Predicate ProducedFeed-
back describes when the force should be produced and when the
HapticFeedback should be enabled. The assertion then relies on
the ProducedFeedback predicate to state that all the output angles
produced by the solver fall into the set of angle limits. The Alloy
Analyzer then explores all possible behaviors of the system and
identifies a counter example, if any, that corresponds to a violation
of the assertion. The analysis is exhaustive but bounded up to a
user-specified scope on the size of the element types.

1 pred ProduceFeedback [ou tpu t : Robo tCon t ro l . ou tpu t] {
2 ou tpu t not in ArmType . a n g l e l i m i t
3 some n o t i f i c a t i o n : GeomagicTouch . f o r c e | n o t i f i c a t i o n =

Hap t i c sEnab l ed
4 }
5 / / a s s e r t i f the arm angle i s in the se t of armangle l imi t
6 as se r t ArmAngleCorrect {
7 a l l a : Robo tCon t ro l . ou tpu t | a not in ArmType . a n g l e l i m i t
8 imp l i e s ProduceFeedback [a]
9 }

Listing 2:Assertion on the armmovement safety property.

Feature Models. We conducted a series of interviews with the
robot developers focusing on retrieving domain knowledge. We
lacked documentation on how the family was constructed. There-
fore, we needed to understand the necessary and optional compo-
nents of each robot, extract constraints and dependencies and map
this to features. We used FeatureIDE as our tool for creating the
final model, which allowed us to reason about slices of the product
line[2].

From interviews, we learned the robot is to be a combination of
two sets of configurable hardware components, namely arm types
and effectors on the ends, and configurable software components.
The software components are collectively called plugins, an array of
plug and play configurable elements that can be used interchange-
ably to drive all 15 arm types and 4 effectors in specific ways. We
describe our findings in more details in the next section.
Testing. Our approach for testing the surgical software relies on
Microsoft CodedUI [10] plugin, a tool for testing user interfaces. It
is capable of generating test cases based on manual interactions
with the GUI. It can replay the tests, though it is not able to reverse
engineer the interface to create a model of the system. CodedUI
generates test cases automatically, but the generated code is tightly
coupled, and if modifications are made, they will be discarded after
building the project. Therefore, there is a need to extract the most
relevant pieces of code, such as how to navigate between interfaces,
the input values, and to verify assertions. We have extracted the
code generated by CodedUI into an auxiliary class and refactored
it, creating a class encapsulating the most important functionality
of a test case, which is then used as a template. Individual robot
classes can call this class, and it will perform the following steps:
(1) Load configuration; (2) Go to solver plugin and select arm type,
Go to the controller and input values to move the arm; (3) Go to the
solver and verify the output. With all this information, it is then
possible to generate a replayable test case for individual robots, as
they will follow the same steps, only varying in the solver, type of
robot arm and input values.

3.2 Results
We present our results and describe our challenges for each part of
the process next.
Finding Alloy Counter Examples. As we built the Alloy model
to search for a counter example, we used guidance primarily from
static analysis. In order to cover the space of products of this robotic
system, we needed to develop different models for each different
robotic arm. This resulted in 15 Alloy models. The necessary fea-
tures for the Alloy models include the Arm Type, Solver, Geomatic
Touch, Haptic Feedback, and two plugins created to manipulate in-
puts from Geomagic Touch, named Clutch and HomePosition. Each

788

Modeling and Testing a Family of Surgical Robots: An Experience Report ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Figure 3: Feature Model: Runtime Configurations

model actually represents 88 different products from the robot fam-
ily, rather than a single robot. However, this fact was not obvious
as we built the analysis.

Since the undefined features were not part of the static analysis
and did not contribute to the counter example, they do not appear
in the Alloy model. However, we cannot be sure that the analysis is
precise and leaving out some features may in fact mean that we have
over or under approximated the existence of the counter examples
(see our discussion below in testing). We did find a counter example
for each of the models that did not include the Haptic Feedback
feature. The robots that do use Haptic Feedback, do not lead to this
counter example – i.e. the haptics feature of the system provides
physical feedback to the surgeon anytime he or she tries to move
the arm beyond its maximum range. We next discuss the results
of the feature modeling and its mapping back to these counter
examples.
Feature Model. Figures 3 and 4 show the feature model that we
developed from two different perspectives. The full feature model
is too large to show, so we have elided some features in each figure.
Our full feature model (in an XML format) can be found on our
project website [12]. In total (with cross-tree constraints) there are
1,320 potential surgical robots supported by this system. Figure
3 shows the high level features (Arm Type, Effector, Load Time
Configuration Options, Runtime Configuration Plugins). In this figure
we focus on the Runtime configuration plugins, in particular we
show the branch of the feature model that includes the Haptic
Feedback (last leaf on right).

Figure 4 shows the breakout for the ArmType and Effectors.
The Arm type was further broken down during modeling because
the developers pointed out that only 4 arm types are currently
in active use. The other 11 are physical arms that are no longer

Figure 4: Feature Model: Arms

used. However, since this distinction is based solely on domain
knowledge and discussion with developers, it is not reflected in the
Alloy models. For the Alloy models, all 15 arm types were modeled
because the code is still active and discovered during static analysis.

The feature model also has multiple cross tree constraints (not
shown). These were determined via both discussion with the de-
velopers and by studying the code and configuration panels as
selections are made. This was a challenging and iterative part of
the process. It turns out that there is a highly constrained hierarchy
between the hardware and software. Each arm type uses a single
solver and each arm type either has haptic feedback or not. Other
constraints include physical limits of the graspers, for instance.
Most of these are hard coded into the software which means when
any arm type is selected in FeatureIDE, we immediately have a
small slice of the product containing only 88 of the 1,320 products.
However, there are still 88 products that must be tested for each
counter example if we are to confirm the existence of the faulty
property. We discuss this next.
Testing. Five of the robot arms led to the counter example (FiveD-
OFSolver, FourDOF_needle, FrankenVREP, SevenDOFSolver and
TomBot). To validate that these are not exhibiting false positives
we built concrete test cases for each and observed the output. A
failing test case shows that the arm location stays fixed at the same
point once it is pushed out of range. A correct behavior shows a
negative value in simulation when this occurs. We confirmed this
by also testing the robots that did not exhibit the counter example.

Our first problem for testing stemmed from the fact that each of
the Alloy configurations represents a set of robots (88 robots). We
used the robot simulation mode for testing, however, the simulator
does not capture some of the hardware components that lead to
the larger number of robots. For instance, there are five different
effectors that provide physical movements such as shearing, cautery,
grasping, etc. These are related to the robot hand, which sits below
the arm, and are not part of the simulator, and do not impact the
solver output which is needed for the counter example to change.

We, therefore, ignored the features that do not impact the arm
extension and/or impact whether or not the feedback is produced
and tested only a single instance for each set of 88 products. This
created a savings for us in terms of number of tests, however, the
validity of this approach is dependent on the quality of our static
analysis. The features that we were not able to capture in our simu-
lation include, Arm side (Left or Right), Effector Type (5 different
effectors) and specific modules to move the hand which are related

789

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mansoor, Saddler, Silva, Bagheri, Cohen, Farritor

to the effectors (Clamp Close, Expand Open, Wrist Rotate, Effector
Bend). The behavior of Grasper Limit and Scale plugins is not cap-
tured in our simulation of the system either, as they do not affect
the output angles of the robot arm.

For the five robots that we were able to simulate, we selected a
range of input values/angles on the console. As is common with
configurable software, the configuration layer is orthogonal to
the input layer. We did not have an automated generation tool.
We selected values from a range that we expected would push
the robot beyond a valid extension point (i.e. we used domain
knowledge to help us find the important boundary values). Using
this approach we were able to confirm that the counter examples
do exist and the robot can be pushed outside of its limit with no
feedback returned. As the robot goes out of range, in the systems
without haptic feedback, the arm simply stops moving and records
the same position over and over again once it reaches its limit.

Interestingly one robot, TomBot, printed a message to the debug
console telling the developer that the arm was out of range. The-
oretically, this could be passed to the physician console, but it is
not propagated, so this information is lost when the robot is used
outside of the debugging environment.

4 LESSONS LEARNED
We present our lessons learned next.

• Architecture Plays a Large Role and can Help Analy-
sis. The way a system is designed and implemented has a
significant impact in conducting a safety analysis. While de-
pendencies among the various robot software components
and the external components made it challenging to get the
software running and working, its modular, plug-in-based
nature helped us achieve a clear understanding of the system
and the event flow between various components, which in
turn facilitates the process of creating the dependability case.

• Developers Should Consider the Family of Products.
One of the challenges we faced in concretizing counter ex-
amples and validating them was the unavailability of the
configuration files for the entire surgical robot family. We
only had access to the configurations for a small subset of
robot instances that were currently being used by the engi-
neers working with the system. To check the property for
the rest of the robotic arms, we needed to create new config-
uration files which involved a tedious process of loading and
validating each of necessary plugins for a particular arm.

• WeNeedMethods toMap FeatureModels to Alloy.Our
two views of the family of robots (Alloy and Feature models)
differed in their granularity and focus. The feature model
included both hardware and software and had some arbitrary
divisions (e.g. the arm types), where as the Alloy model
contained only the code-based features that led to the counter
example. However, together they tell the full story of our
robot and its potential safety properties. New methods are
needed to merge these disparate models together.

5 CONCLUSIONS AND FUTUREWORK
In this paper we presented an experience report working with
a cyber-physical safety-critical software product line, a robotic

surgery system. We used both lightweight formal analysis and fea-
ture modeling to reason about (1) a counter example that allows the
arm to move outside of range without providing feedback and (2)
the variability across the product line. We then applied testing to
validate the counter examples discovered. While our Alloy models
and feature models overlap, they are extracted using two different
approaches and hence differ in granularity. This led us to synthe-
size several lessons learned and propose that researchers can use
those to develop novel techniques for merging feature and Alloy
models, for modularizing their architectures and for more easily
discovering configurations for all necessary products. Future work
includes expanding our properties, adding more rigorous testing
and building physical test platforms.

ACKNOWLEDGEMENT
We thank L. Cubrich for his help with domain knowledge and for
providing us with an open source robotic surgery code base. This
work was supported in part by an NSF EPSCoR FIRST award, a
University of Nebraska Collaboration Initiative Seed Grant, and
awards CCF-1755890, CCF-1618132 and CCF-1745775 from the National
Science Foundation.

REFERENCES
[1] 2018. Geomagic Touch Device. https://www.3dsystems.com/haptics-devices/

touch.
[2] Mustafa Al-Hajjaji, Jens Meinicke, Sebastian Krieter, Reimar Schröter, Thomas

Thüm, Thomas Leich, and Gunter Saake. 2016. Tool Demo: Testing Configurable
Systems with FeatureIDE. In Proceedings of the ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences (GPCE 2016).
173–177.

[3] Lou P. Cubrich. 2016. Design of a Flexible Control Platform and Miniature in
vivo Robots for Laparo-Endoscopic Single-Site Surgeries.

[4] Lou P. Cubrich. 2018. Surgical Robot Control Software.
https://github.com/surgical-robots/robot-control-app/tree/tel-surge-update.

[5] Majdi Ghadhab, Sebastian Junges, Joost-Pieter Katoen, Matthias Kuntz, and
Matthias Volk. 2017. Model-Based Safety Analysis for Vehicle Guidance Systems.
In Proceedings of the International Conference on Computer Safety, Reliability, and
Security, SAFECOMP. 3–19.

[6] Daniel Jackson. 2006. Software Abstractions - Logic, Language, and Analysis. MIT
Press.

[7] Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. 2011. Reducing
Combinatorics in Testing Product Lines. In Proceedings of the Tenth International
Conference on Aspect-oriented Software Development (AOSD ’11). 57–68.

[8] Urtzi Markiegi. 2017. Test Optimisation for Highly-Configurable Cyber-Physical
Systems. In Proceedings of the 21st International Systems and Software Product
Line Conference - Volume B (SPLC ’17). 139–144.

[9] Eric Markvicka. 2014. Design and Development of a Miniature In Vivo Surgical
Robot with Distributed Motor Control for Laparoendoscopic Single-Site Surgery.
Ph.D. Dissertation. University of Nebraska-Lincoln, Department of Mechanical
and Materials Engineering.

[10] Microsoft. 2018. Coded UI. https://msdn.microsoft.com/en- us/li-
brary/dd286726.aspx.

[11] Joseph P. Near, Aleksandar Milicevic, Eunsuk Kang, and Daniel Jackson. 2011. A
lightweight code analysis and its role in evaluation of a dependability case. In
Proceedings of the International Conference on Software Engineering, ICSE. 31–40.

[12] Jonathan A. Saddler Niloofar Mansoor. 2018. Surgical Robot Models.
https://sites.google.com/view/FSESurgeryRobots/.

[13] Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Jonathan Jacky. 2016. Investigating Safety of a Radiotherapy
Machine Using System Models with Pluggable Checkers. In Proceedings of the
International Conference on Computer Aided Verification, CAV, Part II. 23–41.

[14] Sam Procter, John Hatcliff, and Robby. 2014. Towards an AADL-Based Defi-
nition of App Architecture for Medical Application Platforms. In International
Symposium on Software Engineering in Health Care,SEHC. 26–43.

[15] Danielle Stewart, Michael W. Whalen, Darren D. Cofer, and Mats Per Erik Heim-
dahl. 2017. Architectural Modeling and Analysis for Safety Engineering. In
Proceedings of the International Symposium on Model-Based Safety and Assessment.
97–111.

[16] Jian Xiang, John C. Knight, and Kevin J. Sullivan. 2015. Real-World Types and
Their Application. In International Conference on Computer Safety, Reliability, and
Security, SAFECOMP. 471–484.

790

https://www.3dsystems.com/haptics-devices/touch
https://www.3dsystems.com/haptics-devices/touch

	Abstract
	1 Introduction
	2 Overview of the Surgical Robots Family
	3 Building a Dependability Case
	3.1 Process
	3.2 Results

	4 Lessons Learned
	5 Conclusions and Future Work
	References

