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Background and Context: Understanding how a student programmer solves different task types in different programming
languages is essential to understanding how we can further improve teaching tools to support students to be industry-ready
when they graduate. It also provides insight into students’ thought processes in different task types and languages. Few
(if any) studies investigate whether any differences exist between the reading and navigation behavior while completing
different types of tasks in different programming languages.

Objectives: We investigate whether the use of a certain programming language (C++ vs. Python) and type of task (new
feature vs. bug fixing) has an impact on performance and eye movement behavior in students exposed to both languages and
task types.

Participants: Fourteen students were recruited from a Python course that taught Python as an introductory programming
language.

Study Method: An eye tracker was used to track how student programmers navigate and view source code in different
programming languages for different types of tasks. The students worked in the Geany IDE (used also in their course) while
eye tracking data was collected behind the scenes making their working environment realistic compared to prior studies. Each
task type had a Python and C++ version, albeit on different problems to avoid learning effects. Standard eye tracking metrics
of fixation count and fixation durations were calculated on various areas of the screen and on source code lines. Normalized
versions of these metrics were used to compare across languages and tasks.

Findings: We found that the participants had significantly longer average fixation duration and total fixation duration
adjusted for source code length during bug fixing tasks than the feature addition tasks, indicating bug fixing is harder.
Furthermore, participants looked at lines adjacent to the line containing the bug more often before looking at the buggy line
itself. Participants who added a new feature correctly made their first edit earlier compared to those who failed to add the
feature. Tasks in Python and C++ have similar overall fixation duration and counts when adjusted for character count. The
participants spent more time fixating on the console output while doing Python tasks. Overall, task type has a bigger effect
on the overall fixation duration.and count compared to the programming language.

Conclusions: CS educators can better support students in debugging their code if they know what they typically look at
while bug fixing. For new feature tasks, training students not to fear edits to learn about the code could also be actively
taught and encouraged in the classroom. CS education researchers can benefit by building better IDE plugins and tools based
on eye movements that guide novices in recognizing bugs and aid in adding features. These results will lead to updating
prior theories on mental models in program comprehension of how developers read and understand source code. They will
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eventually help in designing better programming languages and better methods of teaching programming based on evidence
on how developers use them.

CCS Concepts: « Human-centered computing — Human computer interaction (HCI); » Software and its engineering —
Language types; « Applied computing — Education; - Social and professional topics — Software engineering education.

Additional Key Words and Phrases: program comprehension, source code, C++, Python, bug fixing, new feature tasks,
programming education, learning behavior, eye tracking study

1 INTRODUCTION

Software developers often use several different programming languages when implementing solutions to prob-
lems [74, 76]. Some problems are easier solved using features of one language compared to another. Tshukudu and
Cutts offer a perspective on the mastering of several programming languages [74]. The choice of programming
language has been a long debated topic with no clear empirical evidence of one faring better than another from
the usability perspective of the developer [67]. In addition to the possibility of using different programming
languages, a software developer typically completes various types of tasks when building software: implementing
new features, fixing bugs, testing, or refactoring existing code [32]. These tasks require a developer to comprehend
the code first before they make a change and modify it [16]. Similar to professional developers, computer science
and software engineering students also learn and use different programming languages while learning comput-
ing concepts, and studying how they understand and work with these different languages provides valuable
information for teaching and learning purposes. Empirical evidence on the effect of programming languages
and various types of tasks can help build stronger theories on program comprehension and help with designing
better methods for teaching programming.

Since the 1980s, there has been research published on mental models in program comprehension [12, 35, 50,
55, 69, 79]. Besides surveys and think aloud, another method to study program comprehension, which can be
defined as the cognitive processes of understanding code to build a mental representation of the program [59], is
to use eye tracking technology [25, 29, 65, 82] to understand what a person is paying attention to while working
on a program. The eye movement data can be used to study a person’s visual attention and make informed
hypotheses about their thought processes and strategies used [14, 49]. Crosby et al. published one of the very
first eye tracking studies on how students read a binary search algorithm [17] in 1990. However, eye tracking did
not become popular as a method of data collection until after 2006 [8-10, 24, 46, 62]. Crosby found programmers
to move between the code and comments instead of just reading the code linearly. A practical guide was recently
published on how to properly conduct software engineering and program comprehension studies [61]. A prior
eye tracking study by Abid et al. used eye movements to externalize the mental model of developers predicting
whether top-down vs. bottom-up models [79] were used [1]. This study was done on the Java programming
language on the task of summarizing methods. Another study by Turner et al. compared C++ and Python code
shown as an image for bug localization tasks (where the buggy line needed to be spotted but not necessarily
fixed) [75]. The first step in fixing a bug is to find it. This process of localizing the line where the bug is on is
called bug localization. The next step is the actual fix where the edits are made. However, the study only used
small code snippets, and the tasks were relatively easy. It determined the rate at which people looked at a buggy
line of code between C++ and Python.

Students are often faced with many challenges with learning new programming languages [27, 58, 59]. In order
to help students navigate the initial years of learning programming better, it is imperative to study their behaviors
in different settings and use different modalities of data collection. The focus of this article is to understand
program comprehension [12, 59, 72, 79] in CS students while they perform two task types: bug fixes and new
feature additions in two different programming languages. Our study is rooted in the program comprehension
literature in CS education [15, 59] and software engineering [72]. Student behavior is observed via tracking their
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gaze as well as edits as they solve the tasks. Standard measures such as fixation count and durations over selected
chunks of code that act like beacons [12, 80] are analyzed both quantitatively and visually. To this end, an eye
tracking study is presented that seeks to measure any differences in reading and navigation problem solving
behavior in language (C++ vs. Python) and task type (bug fix vs. new feature). The main motivation behind
this study was to determine empirically if there are inherently any differences in eye movement patterns or
attention to specific programming constructs between two different programming languages (C++ and Python),
and between solving two different software tasks (adding a new feature and bug fixing). As far as we are aware,
this is the first study to compare differences in language and task using eye tracking equipment. This is important
because all prior studies mainly focus on Java, short code snippets, and/or unrealistic environments that do
not generalize to how users(students/experts) actually code in an IDE. ! Another gap that this study bridges is
studying comprehension of programs in different languages using eye trackers in distinct task types. Almost all
tasks studied in the past are related to summarization, but as developers, we perform a variety of tasks [34, 42]
to solve a problem. This paper provides a study environment setup that others can replicate to conduct more
realistic eye tracking studies on various other tasks as well.

The study presented in this paper is fundamentally different from the Turner et al. paper [75]. Not only do
we use an additional task type, but the study instrumentation, data collection, and processing are all uniquely
different as well. The code snippets used in [75] were short (10-12 lines) and shown as images with no way of
interacting with them, which makes the experience unrealistic. In addition, there is no prior eye tracking paper
that investigates different task types done by the same user. There is also no eye tracking paper that we know of
that investigates new feature addition. This is because of the inherent difficulty in conducting an eye tracking
study that involves editing [22, 23].

To summarize, the study presented in this paper bridges many of the above mentioned gaps in empirical studies
done in program comprehension by 1) using longer and more complex code snippets for C++ and Python 2)
testing two different types of software tasks: new feature and bug localization 3) using a realistic IDE setting
(namely the Geany IDE) where the student developer can compile, edit, and run the code while working on a
task and 4) providing line-based analysis (derived from the program comprehension model literature [12, 79]) of
eye movements both quantitatively and visually via scarfplots. The individual behavior is compared across the
languages and tasks. Later as part of future work, we plan to evaluate different program complexities within each
task type and do a comparative study.

The contributions of this paper are as follows:

o First eye tracking study comparing student behavior on different task types (new feature and bug fix) in
two different programming languages (C++ and Python).

o A study design setup that makes use of a realistic IDE (Geany) where students interact with, scroll, edit,
and modify the code freely (instead of images used in prior work). The code, requirements, and console
output were all part of the tracking screen. This setup for study design would be more beneficial than just
viewing the code.

e Usage of two unique analysis methods: a) tracking eye fixation durations and transitions on logically
selected code lines for tracking navigation behavior during the task and b) using scarfplots to visualize
these transitions across time.

e Insights into the student behaviors (reading, navigating, editing) for bug fixing and new feature tasks across
languages. The evidence suggests that bug fixing is harder than new feature addition tasks (significantly
longer average fixation duration and total fixation duration adjusted for source code length). Students
looked at lines adjacent to the line containing the bug more often before looking at the buggy line itself.

ISee Abid et al. [2] for an example where they replicated a short code snippet study with larger realistic programs showing that the results
are different.
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Participants who added a new feature correctly made their first edit earlier compared to those who failed
to add the feature. Python and C++ have similar overall fixation duration and counts when adjusted for
character count. Evidence suggests that task type has a bigger effect size on the overall fixation duration
and count compared to the programming language. This is a strong indication that the task type is truly
important and is the biggest factor in determining performance.

e A complete replication package of the eye tracking dataset collected, stimuli, scripts, and code in order to
facilitate future replication with other tasks.

The paper is organized as follows. We formally state our research questions in Section 2. Related work is
explored in Section 3. We describe our method in Section 4. Results are presented in Section 5. Section 6 presents
the discussion and implications of our work to CS educators in the classroom. Section 7 concludes the paper
highlighting the contributions and paving way for future work.

2 RESEARCH QUESTIONS
The four research questions this study seeks to address are as follows:

e RQ1: What are the differences between reading and navigation behavior in two programming languages:
C++ and Python?

o RQ2: What are the differences between reading and navigation behavior between two task types: bug fixing
and feature addition tasks?

e RQ3: What behaviors do developers engage in during a bug fixing task?

e RQ4: What behaviors do developers engage in during a new feature task?

The first research question (RQ1) seeks to understand how developers navigate between the various parts
of the development environment, such as source code, output, and requirements, when C++ and Python are
used. Investigating this could tell us how long developers spend debugging in different languages and how
they navigate betwen the output console, code, and requirements. The second research question (RQ2) seeks
to understand similar behavior differences as RQ1 but in the context of how developers read and navigate two
types of tasks. The third research question (RQ3) tries to understand the behaviors developers use while trying
to localize and fix a bug in both the C++ and Python languages. The fourth research question (RQ4) looks at
developers’ editing behaviors when given a set of requirements to implement in existing code in both C++ and
Python. Since the nature of the two types of tasks is distinct and different, programmer behavior while working
on the two types of tasks may vary. Their behavior may also vary when solving problems in each language.

3 RELATED WORK

In this section, we first present related computer science education work to emphasize the importance of program
comprehension in relation to teaching and learning. We also present eye tracking related work from program
comprehension and software engineering literature to show the importance of using eye tracking in studying
attention and program comprehension. In addition, we provide a list of models and theoretical frameworks that
are related to this line of work.

3.1 Computer Science Education - Learning to Program

Learning programming involves reading and comprehension, which in turn means that findings of programming
comprehension studies can help computer science educators with shaping their course content and updating
their teaching methods to enhance learning. There is a challenge, however, in relating the findings from empirical
studies to teaching methods and learning. Izu et al. provide some examples of teaching methods and materials
related to program comprehension [27]. In their critical review, Schulte et al. [59] analyze and compare the
different programming comprehension models and provide some insights on how these models can be applied to
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teaching methods and provide students with better and more effective learning tasks. They conclude that the role
of domain knowledge for program comprehension should be highlighted more in education, the instruments
used in empirical studies might be useful to test learning outcomes, and the differences in expert and novice
understanding of programs should also be discussed and investigated in programming education. They state that
experts have a flexible and navigational mental representation (i.e., their representations are more than the sum
of the elements from reading) of programs, which is in line with findings of Busjahn et al. [14] who found that
novices have a more linear reading method when working on programs compared to experts. Additionally, There
have been studies on challenges and barriers in learning how to program, and how the programming language
affects learning. Stefik et al. [71] conducted a study on how novices learn syntax, and how learning varies across
different programming languages. Their results showed the importance of syntax for novice programming,
how variations in syntax affect the accuracy rate, and that some syntactic designs in languages were easier to
comprehend for novices compared to others.

Due to the importance of learning programming, computer education researchers are interested in how
students read and trace code, which is directly related to code comprehension. There are several works that
have investigated the relationship between reading, tracing, and writing skills in programming students who
have recently started to learn how to code [18, 36, 37, 78]. They all found direct relationships between tracing
and reading code and code comprehension, and that students who write better code are better at tracing and
explaining it as well. In this paper, we use eye tracking as a method to track student gazes on the code, which can
give us insight into how they trace and understand code to solve specific problems.

There are several other approaches for analyzing the patterns of learning in students. Allevato et al. [4]
analyzed the sequence of submitted assignments from students and allowed them to change their code so that it
could pass the grading criteria and test cases. They realized that students who did better on assignments made
more increasing changes and worked incrementally, compared to students who did poorly on assignments who
made decreasing changes. Mansoor et al. [39] studied how students comprehend and learn the Alloy language, a
specification language based on first-order logic. They created detailed tutorials for all participants, taught the
language in some classes, and recruited some students from those classes. Additionally, they recruited non-novices
who already knew the language, to compare the work patterns of novices and non-novices. They found a similar
pattern of incremental changes when looking at the Alloy analyzer interaction logs, and that novice participants
who made more edits and executed the models more often, had higher accuracy scores. Piech et al. [54] used
another method to model how students learn, studying how they get to their final solution by capturing snapshots
from compilations to analyze the changes between each compile. They present how their modeling can inform
about the similarity and differences of learning patterns, and be a predictive model about each student’s progress
over the course of an assignment. We believe that using eye tracking while studying a participant’s problem
solving patterns, gives us more insight into how they make changes and why they make those changes on code,
and learning these patterns can be very beneficial for educational purposes. If, as an instructor, you are able to
see how your student is reading the code in real time, you can instruct them to correct their focus so they can get
to the bug quicker.

Previous studies have also investigated the different approaches programmers employ to achieve program
comprehension. When tasked with a fill-in-the-blank line in a program, programmers employed several different
strategies to understand the program before filling in the line with the correct code [19]. The authors found that
most programmers began trying to identify the subgoals of a program such as looping through an array or a
maximum algorithm. If a failure to understand a subgoal occurs, additional strategies are employed to resolve the
failure. Margulieux and Morrison et al. have also studied subgoal labels in Python and Java [41, 43].
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3.2 Eye Tracking in Program Comprehension

In recent years, eye tracking studies have been performed to investigate program comprehension in novice and
expert developers. In this section, we present some studies that are closely related. For further information on the
state of eye tracking studies done on program comprehension, we direct the reader to prior systematic literature
reviews [46, 62].

Given the importance of reading in code comprehension tasks, it logically follows that important insights
can be gained from tracking eye movements while participants work on code. Busjahn et al. [15] present eye
tracking as a tool to complement the methods used in computer science education research. Eye movements are
an objective resource when it comes to studying a programmer’s mental model and reading patterns [1, 50]. Eye
movements are a proxy for attention, which provide insight into what information people are considering and in
what order they do specific tasks. Given these properties and what can be learned from eye tracking data, it adds
a lot of value to studies that want to explore comprehension through analyzing reading patterns.

Busjahn et al. conducted a study to look into the differences in how individuals read code versus how they read
words, with an additional focus on programmer expertise [14]. Fourteen novices and nine professional software
developers had their eye movements tracked while they read Java code. They found that novices looked at code
in the same linear fashion that is observed when individuals read text (approximately 80% of the time). Experts,
on the other hand, read code in a much less linear fashion. Since this study’s focus is on comparing reading
patterns between experts and novices, they did not ask the participants to work on various types of tasks and
read code in different languages. Our paper tries to compare comprehension patterns in different types of tasks
and languages instead.

We summarize a few relevant studies done using eye tracking in the program comprehension field. Peterson et
al. examine lines developers familiar with open source systems view during summarization and try to correlate
line length with the total duration of time spent on the line [51]. One of their findings is that smaller methods tend
to have shorter overall fixation durations but have significantly longer durations per line. In another study the
authors also investigated the information seeking behavior via eye movements of developers on Stack Overflow,
which showed the importance of code snippets in the questions and answers, and showed that participants did
not look at the title of a post, tags, or votes compared to the rest of the text [53]. Saddler et al. examine developer
reading behavior on Stack Overflow while they search for information related to fixing bugs and building new
features [57]. However, here their focus was more on the reading patterns on Stack Overflow instead of the code
itself. Kevic et al. conducted one of the first eye tracking studies on bug fixing in open source software in the Eclipse
IDE using an early prototype of the iTrace framework [33]. Their study investigated how developers navigate
change tasks, and they found that developers focus on a few methods while working on the tasks, and read small
parts of the code within those methods to complete the tasks. Jbara et al. conducted an eye tracking study to
measure the time and effort spent reading and understanding regular code [28]. They define regular code as code
that includes repetitions of the same basic pattern and is considered to be significantly longer than a non-regular
version. They point out that initial code segments are read more than the later ones in regular code and also that
code reading was far from being linear, as is also pointed out by Busjahn et al. [14]. Obaidellah et al. [47] look at
novice programmer gaze patterns on pseudocode using eye tracking on 51 undergraduate CS students showing
that as difficulty increases, the regressions between areas of interest also tend to increase. Hu et al. demonstrate
that high-performing students had long fixation durations for analytical problems (more structured) and the
problem-solving stage, whereas shorter fixations at the problem exploration stage of interactive problems (less
structured) [26]. This study also uses images and short code snippets. Titus et al. showed via an eye tracking study
that CS students found reading error messages equally hard compared to source code [7]. Abid et al. conducted
an eye tracking study analysis of the use of top-down vs. bottom-up models used during code summarization
tasks [1]. They found that, on average, experts and novices read methods using the bottom-up (more focused)
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mental model than using top-down (bouncing around), and on average, novices spent longer gaze time during
the bottom-up process than experts. Aschwanden and Crosby show that beacons are usually present in code
when the longest fixation duration is over a thousand milliseconds [6]. This study shows that beacons can be
based on the code content and domain of study.

Turner et al. [75] conducted an eye tracking study comparing the accuracy and speed of both bug fixing
tasks and overview tasks written in Python and C++. They found that there were no significant differences in
accuracy or timing between the tasks based on the language they were written in, but they did find that there
was a significant difference in the fixation rate on buggy lines of code between Python and C++. This is the only
previous study we are aware of that compares two programming languages for bug localization and program
overview tasks. Our paper, in addition to using C++ and Python, also looks at different types of tasks that possibly
require different behaviors to perform them correctly, as by nature, a programmer will approach a bug fix very
differently from a feature addition. In addition, it is a more realistic study that covers realistic tasks that are more
than just a few lines long. Our study is fundamentally different in data collection and instrumentation as well.
Moreover, a more comprehensive visualization of fixation transitions between the lines of code is presented via
scarfplots.

Recently, Kather et al. [30] studied code composition and planning while programming and they investigated
the effects of composition strategies and familiarity with code on program comprehension in an eye tracking
study with students. Using eye tracking data and retrospective interviews, students’ reading patterns were
analyzed, and their mental models were studied. They found that familiarity with the template of the program
makes it easier to create schemata. This study also uses images for the stimuli and excessively large areas of
interest to analyze the data, which might miss some intricate details of how students navigate between chunks of
code. It also does not allow the students to interact realistically with the code snippets.

To the best of our knowledge, we are not aware of any studies that compare eye movements on C++ and Python
with respect to different types of software tasks in realistic scenarios, such as using an IDE. We bridge this gap in
the literature and add to the empirical evidence by discussing the differences and similarities of comprehension
behaviors of student programmers who have worked on these different tasks.

3.3 Models in Program Comprehension

In this section, we review various models and theoretical frameworks in the field of program comprehension.
Program comprehension is-a sub-field of software engineering that deals with building a mental representation
(albeit subjective) of the code while solving a task. Storey et al. provide a consolidated review of all the theories,
methods, and tools developed in the software engineering space for program comprehension [72].

Schulte et al. compare and contrast different program comprehension models (from an educational perspective)
and discuss how a block model [58] for program comprehension is mapped to various other prior models [59].
Several theories were proposed in the early 1980s. Brooks introduced the concept of top-down comprehension [12],
driven mainly by a hypothesis and beacons [80] in the code. Soloway and Ehrlich used a similar model using
programming plans or rules of discourse that are used to form a mental representation [70]. Schneiderman et
al. present a bottom-up comprehension model where programmers start with individual code items to get to
higher level abstractions of what the code does [66]. Pennington et al. discuss a framework where two models,
program/control flow and data flow, evolve simultaneously [50]. Letovsky provides a more opportunistic model
approach where programmers use and switch between top-down and bottom-up models as needed [35]. Von
Mayrhauser et al. build on previous models to introduce an integrated metamodel that consists of a top-down
model, a program model, and a situation model [79] where programmers switch between these and build them
simultaneously.
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With respect to determining program complexity from a cognitive perspective, Duran et al. use Cognitive Load
Theory and the Model of Hierarchical Complexity that extends Soloway’s plan-based analysis of programs to a
finer granularity [21]. Ajami et al. also look at code complexity and how syntax, predicates, and idioms could
have an effect on it [3]. They found for loops to be significantly harder than ifs and that counting down is harder
than counting up. However, they point out that there could be other factors besides the use of known idioms and
syntactic structures that could affect code complexity, and more empirical evidence is required. Katzmarski and
Koschke provide a programmer centric view of complexity and show that this does not coincide with complexity
metrics rankings [31]. They point out that data-flow metrics align better with programmer viewpoints than
control-flow metrics but even that is loosely correlated. Yu et al. provide a survey on software complexity metrics
that could be used to determine task variability in program comprehension studies [83].

Izu et al. identify learning activities that address key components of program comprehension and provide
a theoretical learning trajectory to guide teachers in selecting further activities in CS courses [27]. Tshukudu
and Cutts propose a model describing how student novices are affected while learning different programming
languages [74]. They studied students transitioning from Python to Java and vice versa and proposed ways to
ease the transition process. Teague et al. use a neo-Piagetian framework that describes cognitive development
stages that students go through to study simple programming concepts [73]. They show that students make many
mistakes and focus on superficial aspects of the task until they reach the operational stage, at which decentration
of focus occurs. That is the point where the cognitive ability to reason about abstractions and adapt skills to
tasks that are closely related is formed. Clear et al. have published a report on the BRACElet project that has
contributed key findings on how novices learn to program [16]. They also provide guidelines for programming
problems for novices. Cunningham et al. provide support for sketching program traces on paper for code reading
that correlates with greater success on code reading problems that invelve loops, arrays, and conditionals [18].
They used this concept of sketching on new task types such as code writing, code ordering, and code fixing and
found that different types of sketching were used for these tasks, not always with increased performance.

Not related directly to program comprehension, but generally to CS education, Nelson and Ko discuss that
although theory can be helpful in interpreting designs and results, sometimes it can also inhibit progress [45].
We need to pay special attention to this observation, especially with respect to eye tracking studies, because
we have just scratched the surface when it comes to using eye tracking as a means to learn how students and
experts work. There aren’t many studies that are conducted using eye tracking where one can do a meta analysis
to come up with a theory on how students work. We may develop a working theory on how eye movements
occur in different tasks but we still need more empirical evidence to validate such behaviors.

4 METHOD

The objective of this study is to assess how a student programmer approaches understanding two different
programming languages: C++ and Python, in two different task types: bug fixing and new feature addition. Each
student saw both C++ and Python code for the tasks. Eye movements were recorded during the entire study to
objectively determine what students were looking at as they performed the tasks. The tasks themselves are not
directly comparable as we wanted to avoid any learning effects however, they do use similar, semantic constructs
as shown in Section 4.3. In this section, we present the participant demographics, sampling procedures, tasks,
stimuli in the experimental design, eye tracking hardware used, the terminology used, and the tools we used to
collect measures to answer our research questions. We followed the practical guide on conducting eye tracking
experiments while designing the experiment [61].
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Table 1. Participant Demographic Information

9

. . . + Demographic Categories | Choices nf
Demographic Categories | Choices n
C++ Skills Beginner 5
Gender Male 11
Intermediate 5
Female 3
Average 1
Age 18-24 8
Advanced 3
25-34 2
Years of Programming Between 1 and 2 5
34-44 1
in C++ Between 3 and 5 3
>45 3
Between 6 and 10 3
Student Level Not a student 4
More than 10 2
Undergraduate 6
None 1
Graduate 4
Python Skills Idon’t know Python 5
Industry Employment No 9 [
Beginner 1
Yes 5 .
Intermediate 5
IDE * Netbeans 6
Advanced 3
Eclipse 5 -
. . Years of programming None 5
Visual Studio 4
in Python Between 1 and 2 5
Design Skills Average 8
Between 3 and 5 3
Above Average/Good 5
Between 6 and 10 1
Excellent 1 = —
Programming Languages ¥ | Java 9
Programming Skills Average 6
C++ 9
Above Average/Good 6 c s
Excellent 2
Python 5

T Number of participants who chose the corresponding
option in the row.
# Picking multiple answers was allowed.

4.1

The participants were mainly students from a large Midwestern university in the United States. Fourteen
volunteers participated in the study.

Table 1 shows a summary of the demographic information collected from the participants. Eleven participants
were male and three of them were female. Eight participants were between 18 and 24 years old, two participants
were between 25-34 years old, one was between 34 and 44 years, and three were over 45 years old. There were
six undergraduate students, four graduate students, and four non-students (who had just graduated) among
the participants. Nine participants did not have any industry employment and experience, and five participants
indicated that they had industry experience. Netbeans was the most used IDE among the participants, with six
participants choosing it as one of the IDEs they use for programming. Eclipse and Visual Studio were the next
popular choices, appearing in the participants’ answers five and four times, respectively.

We asked the participants to self-report their programming skills and experience levels. Siegmund et al. [68]
state that self estimation is a reliable measurement of programming skills and experience. Eight participants
rated their design skills as average, five rated them as above average/good, and one rated them as excellent. Six
participants rated their programming skills as average, six rated them as above average/good, and two rated their

Participant Characteristics
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Table 2. List of Tasks/Stimuli Used in the Study

. Character Lo Constructs
Stimulus Language Type LOC Description
Count Present
Input/Output
Creates the P P
) Bug Built-in String Functions
Stimulus 1 Python 9 238 Palindrome
Fixing ) (join, reverse, ...)
of a string o
Conditionals
Input/Output
B Creates the Pointers
u
Stimulus 2 C++ ] .g 26 431 reverse of a word While loops
Fixing
or a phrase Arrays
Conditionals
Prints the position Input/Output
) Feature of a number in While Loops
Stimulus 3 Python 46 1052
Addition an-array, or that it Conditionals
was not found Class/Functions
Input/Output
A class defining Arrays
. Feature
Stimulus 4 C++ 31 546 a Stack and all For Loops
Addition
its related functions Conditionals
Class/Functions

skills as excellent. As for programming language specific questions, five participants ranked their C++ skills
as beginner level, five ranked their skills as intermediate, one ranked their skills as average, and finally, three
participants ranked their skills as advanced. Five participants had between 1 and 2 years of experience in C++
programming, three participants had between 3 and 5 years of experience, three participants had between 6
and 10 years of experience, two participants had more than 10 years of experience, and finally, one participant
had no experience in C++ programming. Subsequent questions were about the participants’ skills in Python.
Five participants said that they did not know Python. One ranked their skills as beginner level, five ranked their
skills as intermediate, and three ranked their skills as advanced. Five participants had no experience in Python
programming; five participants had between 1 and 2 years of experience, three participants had between 3 and 5
years of experience, and one participant had between 6 and 10 years of experience. Finally, the participants were
asked to list the languages they could program in. Java was mentioned in the answers nine times, with C++, C
and Python coming as the next most mentioned answers, respectively.

4.2 Sampling Procedures

The students were recruited from a class that taught Python as an introductory programming language. All of
the students were also knowledgeable in C++. There were no incentives for their participation. They were all
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#! usr/bin/python

word = input('Please insert a phrase: ')
x = word.replace("","")
y = ' '.join(reversed(x))
if (x.lower() == y.lower()):
print('{} is a palindrome'.format(word))
else:
print ('{} is not a palindrome'.format(word))

(a) Stimulus 1 (Python Bug Fixing)

#include <iostream>
using namespace std;

int main() {
int arrayl21] = {2,4,7,8,9,3,1,7,8,4,2,9,7,5,3,1,3,5,7,8};
int key;
int holder;
int flag = 0;

cout << "Array: {2,4,7,8,9,3,1,7,8,4,2,9,7,5,3,1,3,5,7,8} \n\n"
<< "Enter the number you want to find in the array above "
<<"(from @ to 9): \n";

cin >> key;

for(int i=0; i<20; i++) {
if (arrayl[i]l == key) {
flag = 1;
holder = i;
break;

b

if (flag != 0) {
cout << key << " was found in position {" << holder <<"}\n";

b

else {
cout << key << " was not found in this array.\n";
}

return 0;

(b) Stimulus 4 (C++ Feature Addition)

Fig. 1. The Python Bug Fixing task and the C++ Feature Addition task used in the study.
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in the CS program. None of them were students of the authors. The authors did not know any of the students
personally. All participation was voluntary and done via an announcement. The study took place in a quiet eye
tracking lab where only the moderator and the participant were present without any outside distractions. The
moderator was there to ensure the participant was seated at the correct distance from the eye tracker and to
perform the calibration. They did not interact with the participants during the experiment. The University’s
Institutional Review Board approved the study prior to its implementation.
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4.3 Conditions and Design

The four different combinations of programming language and task types used in this experiment are listed
in Table 2. A high level description of the programs and the programming constructs that are present in the
program are also listed. Two tasks were presented in Python, and two were presented in C++. From each language
category, one task was a bug fixing task, and the other was a feature addition task.

For the bug fixing tasks, we asked the participants to find the bug located in the program, write the line number
they thought contained the bug, and attempt to fix the bug. They were also given the expected input and output
of the program. For the feature addition tasks, we gave the participants a description of the program’s current
capabilities and a description of an additional feature that they had to implement. Figure 1 shows Stimulus 1 and
Stimulus 4. A complete replication package with all the tasks, programs, and eye movement data is available
at [40].

Participants were given all four tasks in randomly generated order. They had access to the source code in
Geany?, the console output of the program, and the requirements of the task. Requirements included the expected
input and output for the bug fixing tasks and the additional feature that needed to be implemented for the feature
addition tasks. Figure 2 shows an image of the screen setup and these three areas. There was a trial task given to
familiarize participants with the IDE setup so they could ask questions. We did not collect eye tracking data for
the trial task.

We now provide some rationale for why we chose these two types of tasks (new feature and bug fix). As
developers, we perform a variety of tasks on a daily basis, such as bug fixing, feature addition, refactoring, code
review, testing, reading requirements, reading to comprehend code, summarizing code, and many more. Almost
all of the eye tracking studies in program comprehension are on tasks that involve participants summarizing
Java code, and very few are on fixing bugs. There are none on adding new features. Moreover, all studies (except
for a few) are on short code snippets and all on Java. Besides Turner et al. [75] there are no published studies
looking into eye movements on Python that we are aware of. It has been shown by Abid et al. that results derived
from short code snippets are not always consistent with when you use realistic programs within an IDE to test
developers [2]. To bridge this gap, we chose two of the activities we believe developers spend a lot of time on i.e.,
fixing bugs, and adding new features. In the future, we will add more task categories as provided by Murphy et
al. [44].

The goal of this paper was to see how participants fare on different types of tasks. The tasks themselves are
different categories and should not be considered comparable. The goal was to see how the same individual’s
eye movements differed between the different types of tasks. The two tasks chosen are representative of what
software developers typically do i.e., fix bugs and implement new features, as also evidenced by many issue
tracker systems in open source projects.

Our underlying assumption (based on theoretical frameworks such as [18] that looked at different tasks albeit
without eye tracking) is that bug fixing and new feature tasks would require different levels of comprehension and
problem solving skills. For bug fixes, developers generally start with the bug report and/or expected input/output
and try to figure out which line the bug is on by tracing backward to find the line via stack traces or some other
tracing method. With new feature tasks, developers do not do as much tracing since they are implementing
forward based on the requirements they read and what the expected feature should do. Because of these reasons,
we believe that solving these tasks would generate different user behaviors.

For the bug fixing tasks, the requirements of the task were somewhat comparable. One task reverses a word
or phrase (C++) and the other creates a palindrome (Python). The new feature tasks, however, were slightly
different, albeit they used similar constructs listed in Table 2. Since the study design is within subjects, giving
very similar programs across languages would cause learning effects that we wanted to avoid. Since we recruited

2Geany IDE: https://www.geany.org/
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our participants from a Python class, we also wanted to make sure we chose stimuli with concepts already taught
in the class. We asked the instructor for their syllabus and weekly schedule to ensure we used programs and
concepts that was known to the students. We did not use verbatim any code from the class itself. We were not
instructors for the course.

Note that the goal of this paper was not to do a side by side comparison of the same task in C++ vs. Python.
Instead, it was to see how each participant understood C++ vs. Python in two task categories. In order to account
for the difference in lines of code in the tasks, we make sure we normalize our fixations per character because
otherwise, longer programs will always have more fixations as there is more to read (see Section 4.6 for more
details on normalization). For future work, we plan to evaluate different program complexities [3, 21] within
each task category. However, task complexity was not the scope of this paper.

After each task, we asked the participants to rate the difficulty of the tasks, with the options: “Easy", “Average",
and “Difficult". For the statistical analysis, we assigned the numbers 1, 2, and 3 to these choices, respectively.
We also asked the participants to rate their confidence level about each task, with the options “Not Confident",
“Somewhat Not Confident", “Somewhat Confident", and “Very Confident". For the statistical analysis, we mapped
these choices to the numbers 1, 2, 3, 4, respectively.

4.4  Terminology

We provide definitions for basic terminology we use throughout the paper to help provide the reader with context
for our study.

Program comprehension is a sub-field of software engineering/computer education that deals with a user
building a mental representation (albeit subjective) of the code while solving a task.

Task Type refers to the various possible types of tasks a developer (in this case, a student) may engage in.
Possibilities could be bug fixing, new feature addition, refactoring, code review, testing, etc. In this paper, we
only evaluate two task types (bug fix and new feature addition).

Task refers to the actual set of artifacts that falls into the specific task category. For a bug fix task, this would
be the code in the IDE, the program requirements, and expected input and output of the program. For the new
feature task it would be the starter code in the IDE, current description of the program, and a description of the
additional feature to be implemented. In both cases, the console output was also available to the participant. The
participant is expected to engage with these artifacts to produce a result. In the case of the bug fixing task, the
result would be the line that had the bug and a fix for the bug. For the new feature addition tasks, the result
would be the newly written code that implements the new feature.

Bug localization (in our study) refers to the time when the participants read the line containing the bug, prior
to any edits made, but do not fix the bug.

Stimuli is eye tracking terminology and simply means anything that is tracked on the screen by the eye tracker.
In our case, the Geany IDE was the main stimulus that contained within it all the artifacts that the participant
Saw.

Chunks refer to a line or set of contiguous lines of code with a specific logical and semantic meaning. We also
refer to them as beacons [6, 80].

Areas of Interest (AOI) refer to parts of the stimulus on which eye tracking metrics are recorded. Examples
could be chunks in the code editor, the requirements area of the IDE, or the console output. The AOI is usually
defined by the researcher.

Fixation is the stabilization of the eyes on an object of interest for a certain period of time. Fixations are made
up of multiple raw gazes and have a duration associated with them which we refer to as the fixation duration.
Most processing happens during fixations which is why they are a standard measure in most eye tracking studies.
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Scanpath refers to the directed path formed by saccades between fixations. It determines how the eye navigates
across the stimuli.

Reading behavior refers to the percentages of fixations that appear on the various AOIs in question.

Navigation behavior refers to the scanpath on source code over time.

Editing refers to the act of modifying the code in order to fix a bug or implement a new feature.

4.5 Procedure

We present the study procedure, including experimental setup, eye tracking hardware, and discuss the steps for
pre-processing the eye tracking data to produce fixations on parts of the stimuli.

4.5.1 Experimental Setup - Study Environment. The experimental suite Tobii Studio was used to record all the
eye tracking data. We set up Tobii Studio to record the computer’s desktop so everything that appeared on the
desktop during the study was recorded. This way, when we opened the Geany IDE, all eye tracking data was
collected on the Geany IDE. The stimuli given were not images. Rather, the entire screen was a stimulus. Thus,
anything looked at on the screen was recorded. Note that Tobii Studio is limited in processing eye movements
with scrolling and context switching on desktop stimuli. In order to overcome this limitation we did a manual
post processing step to detect scrolling and appropriately used keyframing available in Tobii Studio to detect the
correct element that was looked at in the presence of scrolling. This was a manual time-consuming process. An
example of how the desktop looked like is shown in Figure 2. The left part of the image shows the Geany IDE
containing the source code. The top right part of the image shows a text document containing the requirements,
input, and expected output. The bottom right part of the image shows the console output.

4.5.2  Eye Tracking Apparatus. The Tobii X60 eye tracker was used for the data collection and recording gaze
data. It is a remote eye tracker with a 60Hz sample rate and an accuracy of 0.5 degrees. A nine point calibration
was used prior to starting the study for each participant. The monitor used was a 24-inch LCD monitor at a
1280%1024 resolution.

The IV-T fixation filter [5] was run on the raw gazes and exported out of Tobii Studio for analysis. An
interpolation to fill in missing gazes of up to 75 ms was used. A velocity window of 20 ms and a velocity threshold
of 30 degrees per second were used to calculate the initial fixations. Adjacent fixations separated by less than 75
ms and 0.5 degrees are merged and fixations less than 60 ms are discarded.

4.5.3  Areas of Interest (AOI). In order to make sense of the eye tracking data, one first needs to define an area of
interest (AOI) it falls under. Areas of interest are typically parts of the stimuli one is interested in observing. Areas
of Interest (AOI) are created in the form of rectangles over the screen recording of participants completing the
tasks. Tobii Studio was used to create these AOIs and map participant’s fixations to the correct AOI Two levels
of AQOIs were used. The top level category of AOIs is the three different sections shown in Figure 2. The three
AOQIs represent Source (the window that contains the source code), Requirements (the window that contains
the requirements for the task), and Console Output (the output window used when running the program).

In addition to the top level AOIs listed above, there were some additional AOIs based on the source code. These
AOIs are mostly defined as a single line of code. However, several AOIs that contain multiple lines of related
code in a single chunk (also referred to as a beacon). As these are related to the code, these AOIs will differ
between each stimulus. In addition, several of our programs required scrolling to view the entire program. In
order to ensure that fixations were correctly mapped to the right AOI even when scrolling occurred, the AOIs
were manually mapped in a post processing step onto the lines of code during scrolling so the fixation mapping
would be correct. Note that the eye tracker is not aware that the items on the screen moved during a scroll (all it
keeps track of is the x,y coordinate in pixels on the screen that the user is looking at) and does not automatically
map gaze to the moved line, which is why we did this manually. The keyframing feature in Tobii Studio was used
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1 #! usr/bin/python
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3 word = input( )

48 x = word.replace("","")

SNy = .join(reversed (x))

6 Tif (x.lower () == y.lower()):

7 print ( . format (word) )

8 else

9 T print ( . format (word))
10

Source

Console Output
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Fig. 2. The three top level AOls: Source, Requirements, Console Output

to keep track of where on the screen the scroll happened and the corresponding AOI was moved accordingly so
the gaze context is maintained. This process is not completely automatic and took considerable time for all four
tasks for each participant. Another student thoroughly spot checked the post processing keyframing to ensure
they were done correctly. In addition, each line visible in the Geany IDE was mapped in a manual post processing
step (after the keyframing was done) via our custom scripts. This was the best option to get line-level data from
the editor.

Once a participant made an edit to the source code, we stopped mapping the source code AQOIs as what the
participants would be looking at in the AOIs may not correspond to the original source code. The new feature
tasks involve a lot of editing. This means adding/removing code at different points in time as the task progresses.
Tracking what a developer looks at while editing code is not a trivial problem. Currently, the state of the art does
not support tracking gaze while editing in a clean manner to accurately tell what the person is looking at as the
code is constantly being changed. This is simply because of how eye trackers work. Most studies done even in
psychology, where eye tracking is very prevalent, only focus on static images and videos with large areas that
are relatively unchanged. Because of this limitation, we chose not to report fixations on partial tokens of code (as
they are written). We do not believe this data would be useful for interpretation. Instead, we report on the lines
added and time to first edit, which we believe is a better metric for the new feature addition task. We are aware
of only one community eye tracking infrastructure iTrace [23] that supports editing via an Atom extension [22]
but even that is limited. This study was not done using iTrace or Atom. For this reason, we opted for the more
traditional editing measures when looking at behaviors while performing the new feature tasks. We report on
details on overall fixation count and durations for the new feature tasks without the editing involved in RQ1
(differences in programming language) and RQ?2 (differences in task type).
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Table 3. Measures used for each of the Research Questions

Research

Metric Definition
Question
RQ1,RQ2  Accuracy Accuracy of a task
RQ1,RQ2 Time The time participants took to complete a task
RQ1,RQ2 Total Fixation Count The total amount of fixations for a given task
Total Fixation Count The fixation count adjusted for the total
RQ1, RQ2
Per Character characters of code in the stimulus
RQ1,RQ2 {AOI} Fixation Count The total fixation count for the specified AOI
RQ1,RQ2 Total Fixation Duration The sum of fixation durations for a given task
Total Fixation Duration The fixation duration adjusted for the
RQ1, RQ2
Per Character total characters of code in the stimulus
RQ1,RQ2 {AOTI} Fixation Duration The total fixation duration for the specified AOI
RQ1,RQ2  Average Fixation Duration The average fixation duration for a given task
RO3 {AOI} Fixation The {AOI} fixation duration as a percentage of the
Duration Percentage total fixation duration on the stimulus before edits
Visualizes gaze transitions on specified AOI across time
RQ3 Alpscarf Plots
before edits
) o ) The amount of time until a participant begins to edit
RQ4 Time Till First Edit
the source code
) o ) The amount of time until a participant begins to
RQ4 Time Till First Edit Percentage
edit the source code in percentage of total time
) The amount of additional lines added to the
RQ4 Lines Added

source code during a feature addition task

4.6 Measures

The measures used in this experiment are based on best practices guidelines reported in the field of program
comprehension, software engineering, and eye tracking [61]. We direct the reader to Duchowski et al. [20] for
a detailed theoretical description of all eye tracking measures. Table 3 describes the metrics used to compare
participants’ behavior while working on the four tasks. We specify the research questions, the metrics used to
answer the questions, and the definition of the metrics. We chose metrics based on fixations, a group of metrics
used in eye tracking studies in software engineering [60, 61] that are used to measure visual effort. In prior
studies, areas of interest with higher fixation count and duration are believed to have attracted more visual
attention or that understanding them required more effort [61, 63, 64]. We calculated the total fixation count and
duration over the given tasks, per character and specific AOIs. Furthermore, we calculated the mean fixation
duration during each specific task as well. The fixation count and duration serve as a measure of visual effort
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when it comes to solving the different types of tasks (bug fixing and feature addition) and comparing the different
programming languages (Python and C++) in our research questions.

Next, we explain why we use the fixation count per character as a metric. In order to compare eye tracking data
across the different programming languages, we first need to normalize the data. The programming languages
C++ and Python have very different semantic structures and different lines of code. There might not be a direct
equivalent construct between the languages. In order to account for the difference in lines of code in the tasks,
we make sure we normalize our fixations because indeed longer programs will have more fixations. We account
for this in our analysis by normalizing by character. To do this we divide eye movement duration over a token.
So if the total fixation duration is 400 ms on a token of 4 characters, the normalized total time is 100 ms. This has
been done in prior work as well by Madi et al. [38] and Abid et al. [2].

5 EXPERIMENTAL RESULTS

In this section, we first present the participants’ confidence levels for each task, and then present our findings for
each research question. The accuracy of the bug fixing tasks was graded as correct/incorrect, by determining
whether the participants found and fixed the bug correctly. The accuracy of the new feature tasks was based
on whether or not the feature was correctly implemented. The time on task was measured via the eye tracking
software by determining the start and end time markers in the eye tracking data for each task. On average, the
participants spent 37.3 (+ 19.8) minutes working on all tasks.

5.1 Confidence Levels

Given that some of our participants stated that they did not know Python, we looked at their confidence levels in
their answers and understanding of each task. This information showed us that even though these participants
did not consider themselves knowledgeable in Python, they mostly had a good understanding of the tasks, and
we believe that due to this fact, we can include them in the analysis for answering the research questions. The
following is the description of confidence levels for each task. Since all the participants were recruited from the
same Python course, they were all learning Python. We asked the students to “Rate your Python programming
skills" and they had the following choices: “I don’t know Python", “Beginner", “Intermediate”, and “Advanced".
We also asked them to “Select years of experience in programming with Python", and the choices were: “None",
“Between 1 and 2", "Between 3 and 5", “Between 6 and 10", “More than 10". We believe some of the students
misunderstood these questions as asking about experiences prior to taking the course.

5.1.1 Bug Fixing Task in Python. The participants generally had high confidence levels about their answers for
this task. Eleven participants were very confident about their answers, including three who stated that they did
not know Python. Two participants were somewhat confident about their answers. Only one participant, one who
did not know Python, was not confident in their answer. The participants who stated they were very confident or
somewhat confident about the task answered correctly. In contrast, the only participant who answered the task
incorrectly was the one who was not confident in their answer.

5.1.2 Bug Fixing Task in C++. The participants were mainly very confident about their answers to the bug fixing
task in C++. All the participants stated that they knew C++. Of the 14 participants, nine were Very Confident about
their answers to this task. One participant was Somewhat Confident in their answer, whereas one participant was
Somewhat Not Confident in their answer. And finally, three participants were Not Confident in their answers.
Additionally, every participant with high confidence in their answer and understanding of the task answered
correctly.

5.1.3 Feature Addition Task in Python. The participants were mainly confident about this task as well. Two
participants, who stated that they did not know Python, did not try to solve this task and had no answer to the
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confidence level question. Nine participants stated that they were very confident about their answers. Two of
these participants did not know Python, but they were very confident in their answers to the task. One person was
somewhat confident about their answer, while two people, one of whom did not know Python, were somewhat
not confident about their answer. And finally, one person who stated that they did not know Python was not
confident about their answer. The results show that out of the five participants who said that they did not know
Python, three tried to solve the task. Two of them were very confident, and one was somewhat not confident. The
confidence level and the score did not show a clear relationship. All seven participants who felt they answered
the task correctly were very confident about their answers. In contrast, the participants who did not answer the
task correctly had varying confidence levels in their answers.

5.1.4  Feature Addition Task in C++. Finally, we observed that the participants were mostly confident about the
feature addition in C++ task. Three participants said that they were not confident in their answers. None of these
three participants added any lines to the program. Two of these three participants did not try the Python feature
addition task either. Eight participants were very confident in their answers, and three were somewhat confident.
The participants who were either somewhat or very confident answered the task correctly, and the other three
participants did not get a score because they did not try solving the task.

5.1.5 Observations. Our observations from the Python bug fixing task indicate that only one of the participants
who claimed that they did not know Python was not confident about their answer and understanding of the
program, and that person did not answer the task correctly. In contrast, the other four participants who claimed
no Python knowledge stated that they had high levels of confidence about their understanding and answer to this
task, and they answered the task correctly. Interestingly, we had more participants who did not feel confident
about the bug fixing task in C++, even though all participants had stated that they knew the C++ language and
had experience with it.

Furthermore, the confidence level of the feature addition tasks shows that three out of four participants who
were not confident (either not confident or somewhat not confident) in the Python task were also not confident
in the C++ task. This can imply that these participants had trouble with the feature addition tasks in general, and
their claimed lack of knowledge in Python might not have been the most critical issue.

Based on these observations, we believe that it is more beneficial to keep the study data from the participants
who claimed that they didn’t have experience with Python, as their lack of experience did not affect their
performance in Python tasks drastically. In addition, they were recruited from a class that taught Python.

5.2 RQ1: Reading differences between C++ and Python tasks

Research question 1-asks about the reading and navigation differences between C++ and Python tasks. The null
and alternate hypotheses for this question are as follows.

LD, The programming language used for the tasks does not affect the visual effort of the participants working
on those tasks.

LD, The programming language used for the tasks affects the visual effort of the participants working on
those tasks.

To test our hypothesis, we calculated accuracy, time, overall fixation count and duration, and AQI fixation count
and duration for the tasks. Note that we use fixation metrics as a proxy for visual effort as stated in Section 4.6.
We then compared these metrics in different languages. Table 4 summarizes the metrics for this research question
and shows the statistical tests for language based differences in reading and code navigation.

5.2.1 Accuracy and Time. The first metrics we investigate are the time participants took to complete a task and
the accuracy of the task. These two metrics together can provide insight into the difficulty of the tasks based on
the programming language. Overall, we found that a single task took 586.1 seconds on average to complete, and
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there was an overall task accuracy of 73.33%. We also found that tasks written in Python took 543.7 seconds to
complete, while tasks written in C++ took 628.4 seconds to complete. We also found that both Python and C++
tasks had an overall accuracy of 71.43%. Figure 3 is the bar chart showing the percentage of accurate answers
from the participants for tasks from each language, and Figure 4 is the boxplot showing the total time taken
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Table 4. Language-based Differences

Metric AOI Python C++ p-value*  Effect
(for eye tracking metrics) Tasks Tasks Size*
Time (Seconds)” N/A 543.7 628.4  0.8302 0.0333
Accuracy (%)" N/A 71.43 7143 - -
Total Fixation Overall (normalized per character) 2.52 2.44 0.8665 0.0178
Count Source Code 955.21 859.82  0.7793 0.0255
Requirement 170.93 185.32  0.2104 0.0484
Output Console 170.39 90.82  0.04767 0.2997
Total Fixation Overall (normalized per character) 0.612 0.570  0.9019 0.0280
Duration (Seconds) | Source Code 212.00 206.91  0.7793 0.0051
Requirement 38.63 39.63  0.6295 0.0230
Output Console 34.08 19.08 0.0402* 0.3023
Average Fixation
Overall 0.219 0.217 0.7282 0.0102
Duration (Seconds)

T Time and Accuracy are not eye tracking metrics, and AOI is not applicable.
i p-values are calculated by the Mann-Whitney test, and Effect Size is Cliff’s Delta.
*p <0.05

to complete each type of task among the participants. The outliers are removed by Python’s plotting function,
which uses the Interquartile Range Rule to detect outliers.

5.2.2  Fixation Count. Next, we investigate the number of fixations from participants during the tasks. Overall,
participants had 1255.07 fixations across all tasks, including all fixations on the Source Code, the Requirements,
and the Output Console. However, to see the effect of programming languages on this metric, we must compare
the programming languages. First, we found that tasks written in Python had, on average, 1346.64 fixations,
while tasks written in C++ had, on average, 1163.50 fixations. Source code length can play a role in fixation count.
The longer the source code (or any type of written text) is the more fixations are required to read through and
understand it, so it is important to control for fixation count as a function of the total character count of code
in the stimulus. We show the total fixation count normalized by character count metric in Table 4, as well as
Mann-Whitney tests comparing the metric overall. The table also reports the overall and AOI specific number of
Total Fixation Count and Mann-Whitney U tests, looking at the differences between the metrics across different
programming languages. We found significant differences in the Total Fixation Count on the Output Console
AOI between the two languages (Mann-Whitney U p = 0.0476, small Cliff’s Delta (d = 0.2997)).

5.2.3 Fixation Duration. Next, we look at the Total Fixation Duration in seconds overall and over the different
AOIs. Looking at the total fixation duration during the tasks, we can see that the overall fixation duration for a
task is, on average, 288.29 seconds. However, as with the fixation count metric, we must compare programming
languages. First, we found that tasks written in Python had a total fixation duration of 304.7 seconds on average,
while tasks written in C++ had a total fixation duration of 271.9 seconds. We report the normalized per character
total fixation duration, the total fixation duration over different AOIs, and Mann-Whitney U test results comparing
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Table 5. Task-based Differences

Metric AOI Bug Feature  p-value* Effect Size *
(for eye tracking metrics) Fixing Addition
Time (Seconds) ¥ N/A 4741 6908 0.0286" 0.3304
Accuracy (%) ' N/A 7931  67.74 0.3200 0.1157
Total Fixation Overall (normalized per character) 3.05 1.91 0.0298"* 0.306
Count Source Code 748.5 1066.54 0.0635 0.2385
Requirement 130.42  225.82 < 0.001% 0.471
Console Output 98.96 162.25 0.1299 0.1632
Total Fixation Overall (normalized per character) 0.757 0.452 0.0098* 0.306
Duration (Seconds) | Source Code 185.8 330.9 0.1315 0.1403
Requirement 30.69 47.63 0.0009* 0.355
Console Output 22.67 30.77 0.2741 0.0663
Average Fixation
Overall 0.227 0.209 0.0002* 0.1939
Duration (Seconds)

T Time and Accuracy are not eye tracking metrics, and AOI is not applicable.
I p-values are calculated by the Mann-Whitney test, and the Effect Size is Clift’s Delta.
*p <0.05

the two languages in Table 4. The tables show that there are significant differences between the total fixation
duration on the Output Console between the tasks in different languages (Mann-Whitney U p = 0.0402, small
Cliff’s Delta (d = 0.3023)). Finally, we did not see any significant differences between the average fixation duration
throughout the tasks in different languages.

RQ1 Finding: The results show that the participants fixated more and longer on the Console Output AOI
while working on Python tasks, and the difference is statistically significant. Based on the results, we can reject
the null hypothesis LDy.

5.3 RQ2: Reading differences between bug fixing and feature addition tasks

We present the null and alternate hypotheses for the research question on task type differences.

TDy The task type (bug fixing vs feature addition) does not affect the visual effort of the participants working
on those tasks.

TD4 The task type (bug fixing vs feature addition) affects the visual effort of the participants working on those
tasks.

Once again, we calculated accuracy, time, overall fixation count and duration, and AOI fixation count and
duration for the tasks for testing our hypothesis. Table 5 summarizes the metrics for this research question and
shows the statistical tests for task-based differences in reading and code navigation.

5.3.1 Accuracy and Time. We found that, on average, bug fixing tasks took significantly less time to complete.
We report the accuracy and time in Table 5. The Mann-Whitney U test shows that the difference in the time
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working on the two types of tasks is statistically significant (p = 0.0286) with a medium effect size according to
its Cliff’s Delta (d = 0.3304).

5.3.2  Fixation Count. We investigate the effect of task type on fixation count. We found that bug fixing tasks, on
average, had 1005.79 fixations, whereas the feature addition tasks had, on average, 1504.36 fixations throughout
the task. We could not find a statistical significance in the differences. After normalizing these fixation count with
the character count of the stimuli, we found significant differences between the two task types after running a
Mann-Whitney test (p = 0.0298) with a medium effect size according to its Cliff’s Delta (d = 0.306). We looked at
the Total Fixation Count between the different AQOIs in different types of tasks, shown in Table 5. We found that
the only significant difference in fixation count is between the fixations on the Requirement AOIL (Mann-Whitney
U p < 0.001, medium Cliff’s Delta (d = 0.471))).

We can see that while feature addition tasks had significantly more fixations, after controlling for the stimulus
length, these tasks had significantly fewer fixations than bug fixing tasks. This indicates that although participants
did not spend as much time and had fewer overall fixations on the bug fixing tasks, the bug fixing tasks were
read more thoroughly than the feature addition tasks.

5.3.3  Fixation Duration. We also report on the effect of task type on fixation duration in Table 5. We found
that bug fixing tasks, on average, had a total fixation duration of 245.7 seconds, while feature addition tasks
had, on average, a total fixation duration of 330.9 seconds. We report the normalized per character fixation
duration in Table 5, and we see that there is a significant difference in the metric between the two types of tasks
(Mann-Whitney U p = 0.0098, small Cliff’s Delta (d = 0.306)). Investigating the Total Fixation Duration over
the different AOIs, we only saw a significant difference in the metric on the Requirement AOI (Mann-Whitney
U p = 0.0009, medium Cliff’s Delta (d = 0.355)). Finally, results show that there is a significant difference
between the Average Fixation Duration in the two types of tasks (Mann Whitney U p = 0.0002, small Cliff’s Delta
(d = 0.1939)).

RQ2 Finding: Overall, the results show significant differences in the Total Fixation Count and Total Fixation
Duration overall (normalized per character), indicating that participants had more frequent and longer normalized
fixations overall in the bug fixing tasks. Furthermore, participants had significantly longer and more frequent
fixations on the Requirement AOIin the feature addition tasks. There was also a significant difference between the
Average Fixation Duration over all AOIs. These differences give us enough evidence to reject the null hypothesis
(TDy), showing that the different types of tasks affect the reading and navigation patterns.

5.4 RQ3: Problem solving behavior in bug fixing tasks

Next, we turn our analysis.to the two bug fixing tasks. To address the third research question, we look at the
scan patterns (scan paths) of the participants and the distribution of fixations on the buggy lines. This research
question is exploratory in nature and does not have a formal hypothesis. Since we stop mapping gazes to lines
when we detect edits (refer to Section 4.5.3 for more information), we report eye gaze distributions in this section
until the first edit. We refer to this as the bug localization phase. Note that there were a lot fewer edits in the bug
fix task since most bugs were limited to 1 line and required minor changes.

5.4.1 Visualization of Scan Patterns. To visualize the scan patterns of the participants while they were working
on the bug fixing tasks, we used the augmented scarf plots generated by the Alpscarf [81] web application. Note
that this visualization is similar but more rich in how it conveys eye transitions between the different lines and
chunks of code compared to the scan patterns shown by Uwano et al. [77] and Sharif et al. [63]

Scarf plots are used in eye tracking research to visualize gaze transitions among areas of interest over time.
They become less effective when there are a higher number of AOIs in a study, and Alpscarf presents a way to
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Fig. 7. Timeline of the percentage of time spent looking at buggy lines in Python and C++ Stimuli.

visualize the transitions and includes order conformity and revisits. We plotted the fixations on the different lines
of the bug fixing tasks’ source code (or groups of lines (chunks), as specified in Tables 8 and 6) over the entire
duration of working on the task until finding the bug and before the first edit. The application gives us multiple
options for visualization, and we chose the Duration-focus and Normalized plot. In the duration-focused plots, as
seen in Figures 5 and 6, the width of each bar specifying a fixation is proportionate to the fixation duration. By
using this option, we can see both the transitions the reading order, and the relative time spent on specific lines.
We also chose the normalized view, which results in all the scarf plots being the same width despite the various
number of transitions or the different fixation times and overall duration of the task. We chose this option for the
better visibility of the data, as some participants spent a relatively longer time than others. The normalized view
helps in comparing the Alpscarfs to better discover patterns. In the Alpscarfs, the mountains (the hills over the
fixations) represent conforming to the expected fixation order (such as reading a program line by line), and the
valleys represent the revisits over the AQOIs.

Figures 5 and 6 show the Alpscarfs of the fixations of eleven people. The fixations on the line containing the
bug are specified with the color red. A green checkmark is placed next to the participants who answered the
tasks correctly, and a red X is placed next to those who answered incorrectly. As mentioned earlier, we do not
have any source code fixations for P6 and P12. Thus, these participants are not included in the visualization.
P12 completed both tasks incorrectly, and P6 completed both tasks correctly. Furthermore, for better visibility
of the data visualization in the paper, we removed the Alpscarf of P9 in Figure 5, as that participant spent an
unusually long time on the task. Despite the normalization of the width of the Alpscarfs, the scan pattern of P9
was not observable. We also removed P8 from Figure 6, as that participant only fixated on one area of interest
(PrintNeg), and there was no pattern to be studied. The scan patterns that were removed from the paper to
increase readability are included in the replication package [40].

For the bug fixing tasks, a bug was introduced on a single line of the source code. Knowing when participants
identified the bug is essential to understanding the problem-solving behavior of the participants. To investigate
the timing of when participants looked the buggy line while working on the task, we segmented the data into ten
sections. We computed the percentage of the time spent fixating on the line containing the bug out of the time
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spent fixating on any line in the program. We then compared these percentages. These bug localization fixation
duration distributions can be seen in Figure 7a for Stimulus 1 (Python) and in Figure 7b for Stimulus 2 (C++).

We see a pattern of initial decrease of the fixations on the line containing the bug in the Stimulus 1 bug
localization timeline. It seems to indicate that participants read past the bug in the program, potentially while
reading for comprehension, and returned to the line containing the bug after reading other parts of the program.
Figure 6 confirms that most participants spent time looking at the line containing the bug at the beginning of the
task. The Alpscarf shows participants looking at the buggy line more and longer at the beginning stages of the
task and coming back to it again later on (Line Reversed). This is expected since, in these two stimuli, the bugs
are located in a similar relative position in the code: line 5 of 9 in Stimulus 1 and line 15 of 26 in Stimulus 2. As
such, the initial reading of a program should look similar if participants read past the line containing the bug.

We analyzed Stimulus 2’s bug localization timeline to compare the participants who correctly found and
corrected the bug and those who failed to find and correct the bug. However, due to the limitations of source
code AOI mapping mentioned in Section 4.5.3, we could not find fixations on any source code AQOIs for two
participants, P6 and P12. P12 completed both tasks incorrectly, while P6 completed both tasks correctly. All the
other participants working on Stimulus 1 completed the task correctly. As for Stimulus 2, aside from P6 and P12,
eight participants submitted the correct solutions to the task and four participants gave incorrect answers to the
task.

Looking at overall patterns in the bug localization timelines for Stimulus 2 (Figure 7b), we see that the segment
with the highest percentage of duration time spent on the line containing a bug occurs within the first 20% of
the timeline. This indicates that participants spent significant time at the beginning of the bug localization task
looking at the line containing the bug. This is also confirmed by Figure 5, in which we can observe that most
participants have fixated on line IfLine2 containing the bug early in the task.

Comparing the bug localization timeline between correct and incorrect solutions can lend insight into the
participants’ different behaviors. We notice in Figure 5 that the participants with incorrect answers (P01, P07,
P11, P13) had a higher percentage of fixations on the line containing the bug in the middle of the task. This can
also be seen in the timeline data (Figure 7b). However, the participants who answered the task correctly, mostly
looked at the line containing the bug at the beginning of the task.

5.4.2 Context of Fixations on Line Containing Bug. The bug localization timeline focused on identifying when
participants looked at a line containing a bug, but it did not help us understand the context of those fixations.
We wanted to understand whether the participants were reading the program in a linear order or if they were
relating another line to the line containing the bug. Investigating this context allows us to get a better sense of
the participant’s strategy to locate the bug.

To learn the context of what was looked at before fixations on the line containing the bug, we specified a
criterion and filtered the fixations based on that criterion. Our criteria were "fixations within five fixations of
a fixation on the line containing the bug" Some of the fixations that fall into this criteria are fixations on the
line that contains the bug, but we do not include those fixations. This windowed fixation dataset can then allow
us to understand the context of the fixations on the line containing the bug by contrasting it with the overall
distribution of fixations on the stimuli.

We first analyze the distributions of Stimulus 2 (C++) shown in Table 6. The distribution of fixation duration on
the source code AOIs is reported on the overall dataset and the windowed fixation dataset. We can see that there
exist several differences between these two distributions. First, the line containing the bug, IfLine2, makes up a
larger percentage of fixation duration in the windowed context. In addition, the line AOIs immediately before
and after IfLine2 also make up a large fixation duration percentage. This shows that participants looked at the
lines closer to the bug before reading the line containing the bug.
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Table 6. Overall Source Code AOI Distribution Vs Windowed Source Code AOI Distribution For Stimulus 2 (C++)
* indicating where the bug is located

Line Code Overall Windowed
Duration | Duration
#include <iostream>
#include <string.h>
Main #define MAX_SIZE 256 7.98% 9.40%
using namespace std;
int main()
char word[MAX_SIZE];
Cout cout <<"Please enter a phrase to be translated: "; | 9.84% 8.45%
cin.get(word, MAX_SIZE);
IfCond if(strlen(word) >0) 6.58% 7.26%
IfLinel charx first = &word[0]; 6.26% 16.17%
IfLine2* charx last = &word[strlen(word)]; 8.37% 22.83%
WhileCond | while(first <last) 15.33% 21.91%
WhileLinel | char tmp = *first; 8.36% 7.68%
WhileLine2 | *first = xlast; 8.64% 7.93%
WhileLine3 | xlast = tmp; 10.85% 8.33%
WhileLine4 | ++first; 6.88% 3.99%
WhileLine5 | —last; 6.14% 3.75%
Output - 7.00% 2.74%

Comparing participants with a correct solution and incorrect solutions in Table 7, we can see that differences
in the windowed fixation datasets exist between these participants. First, participants with an incorrect solution
looked at the source code AOIs above IfLine2 for a longer percentage of time than participants with a correct
solution. The high percentage of fixation duration on the first AOL Main, indicates that they started from the
top of the program and read to the line containing the bug multiple times throughout the task. This pattern
can be observed in Figure 5 in participants who answered the task incorrectly. In addition, we see that the AOI
immediately after IfLine2 is looked at with a lower percentage of fixation duration than participants who
correctly found the bug, indicating that they did not regress to the line containing the bug from the WhileCond
AOI as often.

Overall, it seems that participants with a correct solution seem to have fixations that are focused on lines that
are physically close to the bug before looking at the line containing the bug. We can also observe this in Figure 5,
which shows us that the participants with correct answers spend significant time looking at the line WhileCond.
This is in line with the findings of Peterson et al. [52], stating that participants view related lines together. The
replication package contains the entire source code mapping of lines with the line mnemonic label we use here
(i.e., WhileCond and such).
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Table 7. Windowed Source Code AOI Fixation Duration Distribution For Correct vs Incorrect Solutions For Stimulus 2 (C++)

* indicating where the bug is located

Line Code Correct | Incorrect
Solution | Solution
#include <iostream>
#include <string.h>
Main #define MAX_SIZE 256 3.03% 15.14%
using namespace std;
int main()
char word[MAX_SIZE];
Cout cout <<"Please enter a phrase to be translated: "; | 8.26% 9.20%
cin.get(word, MAX_SIZE);
IfCond if(strlen(word) >0) 5.24% 11.43%
IfLinel charx first = &word[0]; 14.00% 21.28%
IfLine2* char* last = &word[strlen(word)]; 24.14% 20.05%
WhileCond | while(first <last) 23.52% 13.00%
WhileLinel | char tmp = xfirst; 8.87% 12.27%
WhileLine2 | *first = xlast; 7.34% 10.90%
WhileLine3 | *last = tmp; 10.33% 3.49%
WhileLine4 | ++first; 4.47% 0.69%
WhileLine5 | -last; 4.16% 2.09%
Output - 2.25% 4.74%

Table 8. Overall Source Code AOI Distribution Vs Windowed Source Code AOI Distribution For Stimulus 1 (Python)

Line Code Overall Windowed
Duration | Duration

Start #! usr/bin/python 8.71% 3.40%
Input word = input(’Please inser a phrase: ’) 4.87% 4.49%
Replace x = word.replace("","") 7.54% 9.10%
Reversed” | y = ’ ’.join(reversed(x)) 17.17% 28.72%

If if (x.lower() == y.lower()): 21.12% 29.41%
PrintPos print(’{} is a palindrome’.format(word)) 16.63% 13.74%
PrintNeg else: 34.96 23.93

print (’{} is not a palindrome’.format(word))
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Next, we analyze the distributions of Stimulus 1 (Python) shown in Table 8. First, we see that the line containing
the bug, Reversed, was looked at for a higher percentage of time in the windowed context. While the AOIs
immediately before and after the line containing the bug are looked at with a higher percentage of fixation
duration in the windowed dataset, the difference is not as pronounced as in the line immediately following it.
However, we still see that the fixation duration of the fixations before looking at the line containing the bug is
higher on the adjacent lines than the overall duration during the task.

5.4.3 Observations from the Alpscarfs. Looking closer into the participants’ scan patterns in Figure 5 and 6, in
which the AOI of the line containing the bug is in the color red, we can see that the line contained the bug was
more frequently fixated on in the Python bug fixing task. Figure 6 shows that P01, P03, P04, P05, P09, P10, and
P14 all looked at the line containing the bug at the beginning of the Python bug fixing task, and they frequently
revisited that AOI until the end of the task, indicating the importance of the line to the readers. The Alpscarf
also shows that the participants did not necessarily read the Python code in order, and they went back and forth
between the different lines many times.

In the C++ bug fixing task, as seen in Figure 5, we can see different patterns in participants who did not answer
the task correctly. We can see a more chronological reading pattern in some participants reading the C++ bug
fixing code (P01, P02, P03, P4, P14) compared to Python. We do not see a similar pattern in all the participants
who solved the task correctly, as some visited the lines in the order they were written, and some did not. Out of
the participants who answered incorrectly, P01 and P13 fixated on the line containing the bug a few times at the
beginning of the task, but the fixations were very short. In particular, P01 did not go back to the line containing
the bug at all. Both P07 and P11 revisited the line containing the bug multiple times, but they did not provide the
correct answer to the task.

Finally, we compared the scan patterns of some of the individual participants across the bug fixing tasks in the
two languages. As an example, P04 worked on the C++ task in a very chronological manner, starting from the
beginning of the source code and reading it to the end, only to come back later and re-read the source again. The
same participant did not follow such a method while working on the Python task. They went back and forth
between the AOIs in the Python code and read the code multiple times, resulting in many fixations over the
buggy line. The participant answered both questions correctly, indicating that either the type of bug required
longer fixations in Python or that both methods of code reading work well for this particular participant. As
another example, P13, who answered the C++ task incorrectly and the Python task correctly, read the C++ code
lines more in the order they were written but chose another approach for reading the Python code. We can also
see longer fixations from P13 on the buggy line in the Python task but infrequent and shorter fixations in the
buggy line in the C++ task.

Overall, even though we could not find a very clear pattern in the scan patterns of the participants, comparing
the patterns still provided some insight into the individuals’ choices and reading patterns. It is possible that these
observations account for the individual differences that occur in each person as they are building the mental
model for the programs.

RQ3 Finding: The results show us that the participants pay the most attention to the lines surrounding the
buggy line. Most participants did not read the code linearly and they kept going back to the buggy line and the
lines surrounding it. We also observe that each participant did not necessarily follow the same reading patterns
for both Python and C++ tasks.

5.5 RQ4: Problem solving behavior in new feature tasks

Since new feature tasks, by definition, require the students to change the code, we investigate editing behavior to
address this research question. We explain in Section 4.5.3 why eye tracking measures are not used during editing
as they are not reliably mapped to edited code and no vendor based software supports this to date. Research
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prototypes such as [22] have some support for editing (only in Atom), however, our study was not done with
their framework. We plan on using the iTrace framework for future studies as it significantly simplifies the
mapping of gaze data on tokens [23, 84]. Similar to RQ3, this research question is exploratory in nature and does
not have a formal hypothesis. Table 9 shows the different metrics used in RQ4 and the results of the statistical
tests comparing them.

Table 9. Metrics Used In RQ4

Language Metric Correct Incorrect p-value Effect Size

Python Percent Time Till First Edit 13.44% 44.10%  0.0146" -0.7460
Total Time Till First Edit 107.09 sec. 177.71sec.  0.0195" -0.7143
Lines Added 9.2222 4.2857 0.0186* 0.7143
Confidence Level 4.0000 24286  0.0045* 0.7143
Difficulty 1.7778 2.4286 0.1005 -0.4762
Participant Count 7 7

C++ Percent Time Till First Edit 23.65% 91.75%  0.0114% -1.0000
Total Time Till First Edit 122.35sec.  333.77 sec. . 0.0115" -1.0000
Lines Added 7.8333 0.0000 0.0108* 1.0000
Confidence Level 3:6667 1.0000  0.0054* 1.0000
Difficulty 1.9167 2.0000 0.9367 -0.0556
Participant Count 11 3

*p < 0.05

5.5.1 Time to First Edit. To investigate the editing behavior of the participants in the feature addition task, the
first metric considered is the time until the first edit of the source code. Before participants can add a feature,
they must understand and comprehend the program. While they don’t need to understand the entirety of the
program to add a feature, they must have familiarity with the source code and know what code needs to be added
and where it needs to be added. For Stimulus 3 using Python, we found that participants who correctly completed
the feature addition task waited 107.09 seconds on average before making their first edit, while the participants
who failed to correctly complete the feature addition task waited 177.71 seconds on average. This difference was
statistically significant according to a Wilcoxon test (p = 0.0195) with a large effect size according to its Cliff’s
Delta (d = 0.7143).

For Stimulus 4 using C++, we found that participants who correctly completed the feature addition task waited
122.35.09 seconds on average before making their first edit, while participants who failed to correctly complete
the feature addition task waited 333.77 seconds on average. This difference was statistically significant according
to a Wilcoxon test (p = 0.0115) with a large effect size according to its Cliff’s Delta (d = 1.00).

In order to adjust for the total time that the feature addition task took, we also compared the time until the first
edit in terms of percentage of total time (TTFE Percentage). For Stimulus 3 (Python), we found that, on average,
participants who correctly completed the feature addition had 13.44% of the total time pass before making the
first edit, and participants with an incorrect solution had 44.10% of the total time pass before making the first
edit. This difference was statistically significant according to a Wilcoxon test (p = 0.0146) with a large effect size
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according to its Cliff’s Delta (d = 0.7460). For Stimulus 4 (C++), we found that, on average, participants who
correctly completed the feature addition had 23.65% of the total time passed before making the first edit, and
participants with an incorrect solution had 91.75% of the total time passed before making the first edit. This
difference was statistically significant according to a Wilcoxon test (p = 0.0114) with a large effect size according
to its Cliff’s Delta (d = 1.0000).

5.5.2 Added Lines. Another aspect of feature addition to investigate is the number of lines added to the source
code. We found that the number of lines added to the source code differed between participants with a correct
solution and participants with an incorrect solution. For Stimulus 3 (Python), participants with a correctly
implemented solution added an average of 9.22 lines to the source code, while participants with an incorrectly
implemented solution added an average of 4.28 lines to the source code. This difference was statistically significant
according to a Wilcoxon test (p = 0.0186) with a large effect size according to its Cliff’s Delta (d = 0.714). Of the
seven trials that resulted in an incorrectly implemented feature addition task, three solutions did not add any
lines to the source code, one added 12 lines, while the remaining three added six lines.

For Stimulus 4 (C++), participants with a correctly implemented solution added an average of 7.83 lines to the
source code, while participants with an incorrectly implemented solution did not add any lines to the source
code. This difference was statistically significant according to a Wilcoxon test (p = 0.0108) with a large effect size
according to its Cliff’s Delta (d = 1.0000). Only three participants failed to complete the task, two of whom did
not make any attempts to change the source code.

ROQ4 Finding: Results show significant differences between the editing related metrics between the two
groups of participants with correct and incorrect answers to the feature addition task. We observe that the
participants who make an edit in the earlier stages of working on the task are more likely to answer the question
correctly. The participants with correct answers also add more lines to the code.

5.6 Threats to Validity

We discuss the possible threats to validity for internal, external, construct, and conclusion and state how we tried
to mitigate them.

Internal validity: While we do compare tasks based on the language and task type to determine if language and
task type have an effect on eye movement patterns of programmers, it is possible for a different but comparable
task to have a different difficulty level to a certain programmer, meaning that even if we present equally difficult
but different tasks some programmers may find one task to be more difficult for them to complete. In addition,
we tried to have bug fixing tasks and feature addition tasks have a similar level of difficulty. However, we do not
claim that these are representative of all bug fix and feature addition tasks.

External validity: For external validity, the small size of the programs used may limit the generalizability of our
results. In addition, our participants were mainly students. Because of this, our results may not generalize to a
larger population of programmers, including professionals.

Construct validity: Addressing construct validity, we used some thresholds in our analysis. For example, in RQ3,
we looked at the first five fixations before any fixation on the line containing the bug. We also chose to use ten
segments in the bug localization timeline. Increasing the segment count will provide additional granularity, but
the small sample count may cause gaps in the dataset to appear. We believe that ten segments balance these two
goals for our purposes. In RQ4, we used the time until the first edit as a proxy for when participants were done
understanding the program and began to add a feature. However, a participant can begin adding a feature and
continue reading the program for comprehension after editing has begun. In RQ3, we looked at the distribution
of fixation duration over the AOIs of the source code. These AOIs are mostly line based AOIs, but some closely
related lines were grouped together as a single chunk. Chunk based analysis has been conducted in previous
studies [56], but the decision over which lines to group together can influence the analysis. We mitigate this by
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only directly comparing the distribution of fixation durations over AOIs of the same task. These source code
AOIs are also only tracked before an edit occurs. To mitigate this, we only used the source code AOIs for the bug
localization part of the bug fixing tasks which should occur in its entirety before they attempt to fix the bug.

Conclusion validity: Finally, for conclusion validity, we used the appropriate statistical tests for our inferential
statistics.

6 DISCUSSION AND IMPLICATIONS

In this paper, we looked at the differences in eye movement behaviors in C++ and Python in task types of fixing
a bug and adding a new feature.

We found that while working on bug fixing tasks participants had significantly more fixations per character
count of code than when they worked on feature addition tasks. However, regarding the absolute number of
fixations, the bug fixing tasks had significantly fewer fixations as the tasks were completed in a shorter amount of
time. We also found that bug fixing tasks had an average fixation duration significantly longer than the average
fixation duration for feature addition tasks. We found no significant differences in the total fixation count or
duration when adjusted for the character counts in the stimuli between tasks written in Python and tasks written
in C++. This shows that for the overall fixation metrics that we measured, the task type is more important for
determining these metrics than the language the task is written in.

For the bug fixing tasks, we found several similarities in the navigation behavior during the bug localization
phase of the task. First, we found that after the first 20% of the bug localization phase, a decrease in the percentage
of time spent fixating on the line containing the bug was observed for C++. There are a few possible explanations
for this behavior. The first is that a large portion of the time was not spent locating the bug, but instead, it was
spent on understanding the behavior of the program. After they understand what the program is supposed to do,
the bug becomes easier to spot and they spend little time looking for the bug. The second explanation is that
they located the potential bug early in the bug localization task and spent the remaining time verifying that the
line was indeed a bug by reading the rest of the code. In addition to this behavior, we also saw that participants
often looked at lines that were physically close to the line containing the bug before looking at the bug and quite
often regressed back to the line containing the bug from the AOI after it. In Python, however, there were more
fixations on the buggy line during the middle and latter part of the session for a majority of the participants.
This is in direct contrast to what was observed in C++. This indicates that choice of language plays a role in how
students read the code looking for the buggy line.

For the feature addition tasks, we found that participants who correctly implemented the task added more
lines of code to the source code and were quicker to make their first edit to the source code than participants who
incorrectly implemented it. While the number of lines added is biased against the participants with incorrect
solutions, as several incorrect solutions added no additional lines to the code, the time till the first edit is still
a clear divider. It seems to indicate that the participants who completed the feature addition task were able to
identify where to start adding the feature quicker or iterate over potential solutions quicker. This difference was
seen in both the Python and C++ tasks. We also found that feature addition tasks had significantly more fixations
and fixation time spent inside the Requirements AOL Since participants needed to refer to the requirements
located inside this AOI to correctly implement the new feature, it makes sense that more fixations and fixation
time were needed for these feature addition tasks.

6.1 Relation to Prior Work

With respect to RQ1, which tried to determine differences in programming languages, we did indeed see a
difference based on the normalized total fixation count between C++ and Python. Students spent more time
looking at the Console output when performing Python tasks. We do not believe this is due to noise in the data
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because both Python and C++ had I/O operations (See Table 4.3). We believe that it might be possible that the
Python programs were easier to change and the students got immediate feedback in the console. The data seems
to support this assumption. This result seems to align with Tshukudu and Cutts [74], where different models
were needed to transition between programming languages. Murphy et al. also point to the Console view being
selected the most during their collection of interaction data from Java developers in Eclipse [44].

With respect to RQ2-RQ4, which tried to determine differences in task type, the results show significant
differences in the Total Fixation Count and Total Fixation Duration overall (normalized per character), indicating
that participants had more frequent and longer normalized fixations overall in the bug fixing tasks. These results
align with what was reported by Cunningham et al. [18], where they found the behaviors to change when
different task types are used. One possible reason why the fixation count might be higher for bug fixing is because
the reading strategy when looking for bugs is very different from reading code just to understand what it is doing.
When finding and fixing bugs, one zeroes into certain parts and traces and re-reads them.

With respect to RQ3 and bug fixing behavior, fixations are found closer to the line containing the bug right
before they look at buggy lines. This behavior is also found in prior work by Peterson et al. [52], indicating that
participants view related lines together and using chunking as a mechanism to map eye gazes is replicable in
other studies and tasks as well.

Finally, with RQ4, we found that for both C++ and Python, participants could identify where to start adding a
feature (noted by the time to first edit) quicker and potentially iterate over solutions to solve the task correctly.
Brown et al. collected five years of programmer activity data in a Java IDE, namely Blue] [13]. Part of this data
includes edit sequences of novices. However, they state that no study has made use of the code execution and
code editing sequences as of yet. It would be interesting to see how their results relate to what we found in our
study with respect to the time to first edit and task performance. This is left as a future exercise. The individual
differences we see in our study are also reported in Jbara et al. [28].

6.2 Implications for CS Education Researchers

This is one of the first eye tracking studies that look at the same individual performing two task types in two
programming languages. None of the prior work used the visualization plots shown in Figures 5 and 6. This
was a new form of data visualization and analysis that is richer than what is presented in Uwano et al. [77]
and Sharif et al. [63]. In the future, researchers looking at scan patterns can compare not just lines but chunks
of lines across time. This is important because sometimes, a programming plan [55] or beacon [12, 35] is not
necessarily encapsulated in just one line. We believe this method of comparison opens up new avenues of research
for comparing studies with each other in a more scalable way. When analyzing eye tracking studies, it is also
important to account for individual differences that are quite common. We see this in our analysis of the scarfplots
in our study but also in other studies in the literature, such as in Jbara et al. [28]. CS education researchers can
also benefit from these results by building better tools that guide novices in recognizing bugs, thereby advancing
the state of the art of teaching novices.

The fact that we have noticed differences in task type within the same individual tells us that the type of
task is extremely important, and as education researchers, we should be studying all the different types of tasks
that developers perform on a daily basis. We name a few, such as refactoring, summarization, bug fixing, new
feature addition, testing, and code review. Eye tracking has only mainly studied summarization, with a few
papers looking into bug localization and only one on code review [11]. In addition, most work is done on the Java
programming language. It is time to start branching out to other languages, using more realistic tasks, and also
multiple task types with varying complexities 3, 21]. Especially now that we have eye tracking frameworks such
as iTrace [23, 84] that make the running and mapping of gazes to tokens relatively easy and straightforward.
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Kersten and Murphy provide a task context model to help with developer productivity [32]. The context is
created by monitoring a programmer’s activity and extracting structural relationships between program artifacts.
CS education researchers can consider doing something similar with eye tracking data where when enabled,
the eyes are tracked while the programmer is fixing a bug. Later, these scan paths can eventually be used to
replay the thought process to the same or another developer via visualizations. Such future tools would help
recommendation systems as well, where eye gaze history could be used to recommend areas a student should
look at, based on how they have viewed it in the past so as to keep their mental model in sync with their
prior debugging session. Given the advancement in eye tracking infrastructure [23, 84] and the affordability of
research-grade trackers, this is not a far fetched goal.

6.3 Implications for CS Educators - Teaching

Our findings show a more substantial difference in eye movement patterns in different task types than in various
programming languages. This finding indicates that the comprehension patterns differ regarding the goal of
the task at hand and suggests a need for finding different teaching techniques for solving various types of
programming tasks, no matter what the programming language taught to the students is. Further investigation
into differences of programming languages versus differences of tasks on learning and comprehension, can offer
some insight into “Which programming languages should we teach to students?" [48] and can help in determining
what factors other than language are the most important in program comprehension.

Due to the comprehension pattern differences between tasks, we also suggest that instructors try to include
different tasks in programming homework (e.g. bug fixing, adding features, and summarization) to improve
different program comprehension skills in the students, instead of only focusing on full implementation of
specific problems. Students need more practice reading code that is not written by them so they can practice
their program comprehension skills and learn when to switch back and forth between different models of
comprehension [12, 35, 50, 58, 79]. It will also prove to be more useful in their future careers, as software
developers do incremental work on partial code similar to subgoals [43] instead of always writing code from
scratch.

Finally, CS educators can better support student debugging if they know what novice students typically look at
during various types of tasks. They can also actively teach students not to fear editing the code early on, because
we see a correlation between time to edit and accuracy in feature addition task performance.

7 CONCLUSIONS AND FUTURE WORK

The paper presents an eye tracking study on how the type of task (bug fix and new feature addition) and language
(C++ vs. Python) affect student programmer behavior. We found that the participants had significantly longer
average fixation duration and total fixation duration adjusted for source code length during bug fixing tasks
compared to the feature addition tasks. We also find that the total fixation duration adjusted for source code
length was significantly higher during tasks done in Python than in C++, but the effect was not as pronounced.
We found that during the bug fixing task in C++ many participants read the line containing the bug early in the
task and then continued to other parts of the code before ultimately returning to the line containing the bug. In
Python however, they read the buggy line many times in the middle or later in the session. We also found that
participants looked at lines next to the line containing the bug before looking at the line containing the bug more
often than the overall distribution and that they often regressed back to the line containing the bug from the
lines following it. Finally, we found that participants who successfully completed a feature addition task took
significantly less time to make the first edit to the source code.

As part of future work, we plan on conducting a study using modern eye-tracking frameworks such as
iTrace [23, 84] in order to see how participants traverse through larger and more realistic open source systems
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written in Python, Java, and C++. This would allow us to see if our results scale to a much larger realistic setting.
We would also like to vary additional factors like task complexity within each task type.
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