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Background and Context: Understanding how a student programmer solves diferent task types in diferent programming

languages is essential to understanding how we can further improve teaching tools to support students to be industry-ready

when they graduate. It also provides insight into students’ thought processes in diferent task types and languages. Few

(if any) studies investigate whether any diferences exist between the reading and navigation behavior while completing

diferent types of tasks in diferent programming languages.

Objectives: We investigate whether the use of a certain programming language (C++ vs. Python) and type of task (new

feature vs. bug ixing) has an impact on performance and eye movement behavior in students exposed to both languages and

task types.

Participants: Fourteen students were recruited from a Python course that taught Python as an introductory programming

language.

Study Method: An eye tracker was used to track how student programmers navigate and view source code in diferent

programming languages for diferent types of tasks. The students worked in the Geany IDE (used also in their course) while

eye tracking data was collected behind the scenes making their working environment realistic compared to prior studies. Each

task type had a Python and C++ version, albeit on diferent problems to avoid learning efects. Standard eye tracking metrics

of ixation count and ixation durations were calculated on various areas of the screen and on source code lines. Normalized

versions of these metrics were used to compare across languages and tasks.

Findings: We found that the participants had signiicantly longer average ixation duration and total ixation duration

adjusted for source code length during bug ixing tasks than the feature addition tasks, indicating bug ixing is harder.

Furthermore, participants looked at lines adjacent to the line containing the bug more often before looking at the buggy line

itself. Participants who added a new feature correctly made their irst edit earlier compared to those who failed to add the

feature. Tasks in Python and C++ have similar overall ixation duration and counts when adjusted for character count. The

participants spent more time ixating on the console output while doing Python tasks. Overall, task type has a bigger efect

on the overall ixation duration and count compared to the programming language.

Conclusions: CS educators can better support students in debugging their code if they know what they typically look at

while bug ixing. For new feature tasks, training students not to fear edits to learn about the code could also be actively

taught and encouraged in the classroom. CS education researchers can beneit by building better IDE plugins and tools based

on eye movements that guide novices in recognizing bugs and aid in adding features. These results will lead to updating

prior theories on mental models in program comprehension of how developers read and understand source code. They will
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eventually help in designing better programming languages and better methods of teaching programming based on evidence

on how developers use them.

CCS Concepts: · Human-centered computing → Human computer interaction (HCI); · Software and its engineering →

Language types; · Applied computing→ Education; · Social and professional topics→ Software engineering education.

Additional Key Words and Phrases: program comprehension, source code, C++, Python, bug ixing, new feature tasks,

programming education, learning behavior, eye tracking study

1 INTRODUCTION

Software developers often use several diferent programming languages when implementing solutions to prob-
lems [74, 76]. Some problems are easier solved using features of one language compared to another. Tshukudu and
Cutts ofer a perspective on the mastering of several programming languages [74]. The choice of programming
language has been a long debated topic with no clear empirical evidence of one faring better than another from
the usability perspective of the developer [67]. In addition to the possibility of using diferent programming
languages, a software developer typically completes various types of tasks when building software: implementing
new features, ixing bugs, testing, or refactoring existing code [32]. These tasks require a developer to comprehend
the code irst before they make a change and modify it [16]. Similar to professional developers, computer science
and software engineering students also learn and use diferent programming languages while learning comput-
ing concepts, and studying how they understand and work with these diferent languages provides valuable
information for teaching and learning purposes. Empirical evidence on the efect of programming languages
and various types of tasks can help build stronger theories on program comprehension and help with designing
better methods for teaching programming.
Since the 1980s, there has been research published on mental models in program comprehension [12, 35, 50,

55, 69, 79]. Besides surveys and think aloud, another method to study program comprehension, which can be
deined as the cognitive processes of understanding code to build a mental representation of the program [59], is
to use eye tracking technology [25, 29, 65, 82] to understand what a person is paying attention to while working
on a program. The eye movement data can be used to study a person’s visual attention and make informed
hypotheses about their thought processes and strategies used [14, 49]. Crosby et al. published one of the very
irst eye tracking studies on how students read a binary search algorithm [17] in 1990. However, eye tracking did
not become popular as a method of data collection until after 2006 [8ś10, 24, 46, 62]. Crosby found programmers
to move between the code and comments instead of just reading the code linearly. A practical guide was recently
published on how to properly conduct software engineering and program comprehension studies [61]. A prior
eye tracking study by Abid et al. used eye movements to externalize the mental model of developers predicting
whether top-down vs. bottom-up models [79] were used [1]. This study was done on the Java programming
language on the task of summarizing methods. Another study by Turner et al. compared C++ and Python code
shown as an image for bug localization tasks (where the buggy line needed to be spotted but not necessarily
ixed) [75]. The irst step in ixing a bug is to ind it. This process of localizing the line where the bug is on is
called bug localization. The next step is the actual ix where the edits are made. However, the study only used
small code snippets, and the tasks were relatively easy. It determined the rate at which people looked at a buggy
line of code between C++ and Python.

Students are often faced with many challenges with learning new programming languages [27, 58, 59]. In order
to help students navigate the initial years of learning programming better, it is imperative to study their behaviors
in diferent settings and use diferent modalities of data collection. The focus of this article is to understand
program comprehension [12, 59, 72, 79] in CS students while they perform two task types: bug ixes and new
feature additions in two diferent programming languages. Our study is rooted in the program comprehension
literature in CS education [15, 59] and software engineering [72]. Student behavior is observed via tracking their
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gaze as well as edits as they solve the tasks. Standard measures such as ixation count and durations over selected
chunks of code that act like beacons [12, 80] are analyzed both quantitatively and visually. To this end, an eye
tracking study is presented that seeks to measure any diferences in reading and navigation problem solving
behavior in language (C++ vs. Python) and task type (bug ix vs. new feature). The main motivation behind
this study was to determine empirically if there are inherently any diferences in eye movement patterns or
attention to speciic programming constructs between two diferent programming languages (C++ and Python),
and between solving two diferent software tasks (adding a new feature and bug ixing). As far as we are aware,
this is the irst study to compare diferences in language and task using eye tracking equipment. This is important
because all prior studies mainly focus on Java, short code snippets, and/or unrealistic environments that do
not generalize to how users(students/experts) actually code in an IDE. 1 Another gap that this study bridges is
studying comprehension of programs in diferent languages using eye trackers in distinct task types. Almost all
tasks studied in the past are related to summarization, but as developers, we perform a variety of tasks [34, 42]
to solve a problem. This paper provides a study environment setup that others can replicate to conduct more
realistic eye tracking studies on various other tasks as well.
The study presented in this paper is fundamentally diferent from the Turner et al. paper [75]. Not only do

we use an additional task type, but the study instrumentation, data collection, and processing are all uniquely
diferent as well. The code snippets used in [75] were short (10-12 lines) and shown as images with no way of
interacting with them, which makes the experience unrealistic. In addition, there is no prior eye tracking paper
that investigates diferent task types done by the same user. There is also no eye tracking paper that we know of
that investigates new feature addition. This is because of the inherent diiculty in conducting an eye tracking
study that involves editing [22, 23].

To summarize, the study presented in this paper bridges many of the above mentioned gaps in empirical studies
done in program comprehension by 1) using longer and more complex code snippets for C++ and Python 2)
testing two diferent types of software tasks: new feature and bug localization 3) using a realistic IDE setting
(namely the Geany IDE) where the student developer can compile, edit, and run the code while working on a
task and 4) providing line-based analysis (derived from the program comprehension model literature [12, 79]) of
eye movements both quantitatively and visually via scarfplots. The individual behavior is compared across the
languages and tasks. Later as part of future work, we plan to evaluate diferent program complexities within each
task type and do a comparative study.

The contributions of this paper are as follows:

• First eye tracking study comparing student behavior on diferent task types (new feature and bug ix) in
two diferent programming languages (C++ and Python).

• A study design setup that makes use of a realistic IDE (Geany) where students interact with, scroll, edit,
and modify the code freely (instead of images used in prior work). The code, requirements, and console
output were all part of the tracking screen. This setup for study design would be more beneicial than just
viewing the code.

• Usage of two unique analysis methods: a) tracking eye ixation durations and transitions on logically
selected code lines for tracking navigation behavior during the task and b) using scarfplots to visualize
these transitions across time.

• Insights into the student behaviors (reading, navigating, editing) for bug ixing and new feature tasks across
languages. The evidence suggests that bug ixing is harder than new feature addition tasks (signiicantly
longer average ixation duration and total ixation duration adjusted for source code length). Students
looked at lines adjacent to the line containing the bug more often before looking at the buggy line itself.

1See Abid et al. [2] for an example where they replicated a short code snippet study with larger realistic programs showing that the results

are diferent.
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Participants who added a new feature correctly made their irst edit earlier compared to those who failed
to add the feature. Python and C++ have similar overall ixation duration and counts when adjusted for
character count. Evidence suggests that task type has a bigger efect size on the overall ixation duration
and count compared to the programming language. This is a strong indication that the task type is truly
important and is the biggest factor in determining performance.

• A complete replication package of the eye tracking dataset collected, stimuli, scripts, and code in order to
facilitate future replication with other tasks.

The paper is organized as follows. We formally state our research questions in Section 2. Related work is
explored in Section 3. We describe our method in Section 4. Results are presented in Section 5. Section 6 presents
the discussion and implications of our work to CS educators in the classroom. Section 7 concludes the paper
highlighting the contributions and paving way for future work.

2 RESEARCH QUESTIONS

The four research questions this study seeks to address are as follows:

• RQ1: What are the diferences between reading and navigation behavior in two programming languages:
C++ and Python?

• RQ2: What are the diferences between reading and navigation behavior between two task types: bug ixing
and feature addition tasks?

• RQ3: What behaviors do developers engage in during a bug ixing task?
• RQ4: What behaviors do developers engage in during a new feature task?

The irst research question (RQ1) seeks to understand how developers navigate between the various parts
of the development environment, such as source code, output, and requirements, when C++ and Python are
used. Investigating this could tell us how long developers spend debugging in diferent languages and how
they navigate betwen the output console, code, and requirements. The second research question (RQ2) seeks
to understand similar behavior diferences as RQ1 but in the context of how developers read and navigate two
types of tasks. The third research question (RQ3) tries to understand the behaviors developers use while trying
to localize and ix a bug in both the C++ and Python languages. The fourth research question (RQ4) looks at
developers’ editing behaviors when given a set of requirements to implement in existing code in both C++ and
Python. Since the nature of the two types of tasks is distinct and diferent, programmer behavior while working
on the two types of tasks may vary. Their behavior may also vary when solving problems in each language.

3 RELATED WORK

In this section, we irst present related computer science education work to emphasize the importance of program
comprehension in relation to teaching and learning. We also present eye tracking related work from program
comprehension and software engineering literature to show the importance of using eye tracking in studying
attention and program comprehension. In addition, we provide a list of models and theoretical frameworks that
are related to this line of work.

3.1 Computer Science Education - Learning to Program

Learning programming involves reading and comprehension, which in turn means that indings of programming
comprehension studies can help computer science educators with shaping their course content and updating
their teaching methods to enhance learning. There is a challenge, however, in relating the indings from empirical
studies to teaching methods and learning. Izu et al. provide some examples of teaching methods and materials
related to program comprehension [27]. In their critical review, Schulte et al. [59] analyze and compare the
diferent programming comprehension models and provide some insights on how these models can be applied to
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teaching methods and provide students with better and more efective learning tasks. They conclude that the role
of domain knowledge for program comprehension should be highlighted more in education, the instruments
used in empirical studies might be useful to test learning outcomes, and the diferences in expert and novice
understanding of programs should also be discussed and investigated in programming education. They state that
experts have a lexible and navigational mental representation (i.e., their representations are more than the sum
of the elements from reading) of programs, which is in line with indings of Busjahn et al. [14] who found that
novices have a more linear reading method when working on programs compared to experts. Additionally, There
have been studies on challenges and barriers in learning how to program, and how the programming language
afects learning. Steik et al. [71] conducted a study on how novices learn syntax, and how learning varies across
diferent programming languages. Their results showed the importance of syntax for novice programming,
how variations in syntax afect the accuracy rate, and that some syntactic designs in languages were easier to
comprehend for novices compared to others.
Due to the importance of learning programming, computer education researchers are interested in how

students read and trace code, which is directly related to code comprehension. There are several works that
have investigated the relationship between reading, tracing, and writing skills in programming students who
have recently started to learn how to code [18, 36, 37, 78]. They all found direct relationships between tracing
and reading code and code comprehension, and that students who write better code are better at tracing and
explaining it as well. In this paper, we use eye tracking as a method to track student gazes on the code, which can
give us insight into how they trace and understand code to solve speciic problems.
There are several other approaches for analyzing the patterns of learning in students. Allevato et al. [4]

analyzed the sequence of submitted assignments from students and allowed them to change their code so that it
could pass the grading criteria and test cases. They realized that students who did better on assignments made
more increasing changes and worked incrementally, compared to students who did poorly on assignments who
made decreasing changes. Mansoor et al. [39] studied how students comprehend and learn the Alloy language, a
speciication language based on irst-order logic. They created detailed tutorials for all participants, taught the
language in some classes, and recruited some students from those classes. Additionally, they recruited non-novices
who already knew the language, to compare the work patterns of novices and non-novices. They found a similar
pattern of incremental changes when looking at the Alloy analyzer interaction logs, and that novice participants
who made more edits and executed the models more often, had higher accuracy scores. Piech et al. [54] used
another method to model how students learn, studying how they get to their inal solution by capturing snapshots
from compilations to analyze the changes between each compile. They present how their modeling can inform
about the similarity and diferences of learning patterns, and be a predictive model about each student’s progress
over the course of an assignment. We believe that using eye tracking while studying a participant’s problem
solving patterns, gives us more insight into how they make changes and why they make those changes on code,
and learning these patterns can be very beneicial for educational purposes. If, as an instructor, you are able to
see how your student is reading the code in real time, you can instruct them to correct their focus so they can get
to the bug quicker.
Previous studies have also investigated the diferent approaches programmers employ to achieve program

comprehension. When tasked with a ill-in-the-blank line in a program, programmers employed several diferent
strategies to understand the program before illing in the line with the correct code [19]. The authors found that
most programmers began trying to identify the subgoals of a program such as looping through an array or a
maximum algorithm. If a failure to understand a subgoal occurs, additional strategies are employed to resolve the
failure. Margulieux and Morrison et al. have also studied subgoal labels in Python and Java [41, 43].
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3.2 Eye Tracking in Program Comprehension

In recent years, eye tracking studies have been performed to investigate program comprehension in novice and
expert developers. In this section, we present some studies that are closely related. For further information on the
state of eye tracking studies done on program comprehension, we direct the reader to prior systematic literature
reviews [46, 62].
Given the importance of reading in code comprehension tasks, it logically follows that important insights

can be gained from tracking eye movements while participants work on code. Busjahn et al. [15] present eye
tracking as a tool to complement the methods used in computer science education research. Eye movements are
an objective resource when it comes to studying a programmer’s mental model and reading patterns [1, 50]. Eye
movements are a proxy for attention, which provide insight into what information people are considering and in
what order they do speciic tasks. Given these properties and what can be learned from eye tracking data, it adds
a lot of value to studies that want to explore comprehension through analyzing reading patterns.

Busjahn et al. conducted a study to look into the diferences in how individuals read code versus how they read
words, with an additional focus on programmer expertise [14]. Fourteen novices and nine professional software
developers had their eye movements tracked while they read Java code. They found that novices looked at code
in the same linear fashion that is observed when individuals read text (approximately 80% of the time). Experts,
on the other hand, read code in a much less linear fashion. Since this study’s focus is on comparing reading
patterns between experts and novices, they did not ask the participants to work on various types of tasks and
read code in diferent languages. Our paper tries to compare comprehension patterns in diferent types of tasks
and languages instead.

We summarize a few relevant studies done using eye tracking in the program comprehension ield. Peterson et
al. examine lines developers familiar with open source systems view during summarization and try to correlate
line length with the total duration of time spent on the line [51]. One of their indings is that smaller methods tend
to have shorter overall ixation durations but have signiicantly longer durations per line. In another study the
authors also investigated the information seeking behavior via eye movements of developers on Stack Overlow,
which showed the importance of code snippets in the questions and answers, and showed that participants did
not look at the title of a post, tags, or votes compared to the rest of the text [53]. Saddler et al. examine developer
reading behavior on Stack Overlow while they search for information related to ixing bugs and building new
features [57]. However, here their focus was more on the reading patterns on Stack Overlow instead of the code
itself. Kevic et al. conducted one of the irst eye tracking studies on bug ixing in open source software in the Eclipse
IDE using an early prototype of the iTrace framework [33]. Their study investigated how developers navigate
change tasks, and they found that developers focus on a few methods while working on the tasks, and read small
parts of the code within those methods to complete the tasks. Jbara et al. conducted an eye tracking study to
measure the time and efort spent reading and understanding regular code [28]. They deine regular code as code
that includes repetitions of the same basic pattern and is considered to be signiicantly longer than a non-regular
version. They point out that initial code segments are read more than the later ones in regular code and also that
code reading was far from being linear, as is also pointed out by Busjahn et al. [14]. Obaidellah et al. [47] look at
novice programmer gaze patterns on pseudocode using eye tracking on 51 undergraduate CS students showing
that as diiculty increases, the regressions between areas of interest also tend to increase. Hu et al. demonstrate
that high-performing students had long ixation durations for analytical problems (more structured) and the
problem-solving stage, whereas shorter ixations at the problem exploration stage of interactive problems (less
structured) [26]. This study also uses images and short code snippets. Titus et al. showed via an eye tracking study
that CS students found reading error messages equally hard compared to source code [7]. Abid et al. conducted
an eye tracking study analysis of the use of top-down vs. bottom-up models used during code summarization
tasks [1]. They found that, on average, experts and novices read methods using the bottom-up (more focused)
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mental model than using top-down (bouncing around), and on average, novices spent longer gaze time during
the bottom-up process than experts. Aschwanden and Crosby show that beacons are usually present in code
when the longest ixation duration is over a thousand milliseconds [6]. This study shows that beacons can be
based on the code content and domain of study.
Turner et al. [75] conducted an eye tracking study comparing the accuracy and speed of both bug ixing

tasks and overview tasks written in Python and C++. They found that there were no signiicant diferences in
accuracy or timing between the tasks based on the language they were written in, but they did ind that there
was a signiicant diference in the ixation rate on buggy lines of code between Python and C++. This is the only
previous study we are aware of that compares two programming languages for bug localization and program
overview tasks. Our paper, in addition to using C++ and Python, also looks at diferent types of tasks that possibly
require diferent behaviors to perform them correctly, as by nature, a programmer will approach a bug ix very
diferently from a feature addition. In addition, it is a more realistic study that covers realistic tasks that are more
than just a few lines long. Our study is fundamentally diferent in data collection and instrumentation as well.
Moreover, a more comprehensive visualization of ixation transitions between the lines of code is presented via
scarfplots.

Recently, Kather et al. [30] studied code composition and planning while programming and they investigated
the efects of composition strategies and familiarity with code on program comprehension in an eye tracking
study with students. Using eye tracking data and retrospective interviews, students’ reading patterns were
analyzed, and their mental models were studied. They found that familiarity with the template of the program
makes it easier to create schemata. This study also uses images for the stimuli and excessively large areas of
interest to analyze the data, which might miss some intricate details of how students navigate between chunks of
code. It also does not allow the students to interact realistically with the code snippets.

To the best of our knowledge, we are not aware of any studies that compare eye movements on C++ and Python
with respect to diferent types of software tasks in realistic scenarios, such as using an IDE. We bridge this gap in
the literature and add to the empirical evidence by discussing the diferences and similarities of comprehension
behaviors of student programmers who have worked on these diferent tasks.

3.3 Models in Program Comprehension

In this section, we review various models and theoretical frameworks in the ield of program comprehension.
Program comprehension is a sub-ield of software engineering that deals with building a mental representation
(albeit subjective) of the code while solving a task. Storey et al. provide a consolidated review of all the theories,
methods, and tools developed in the software engineering space for program comprehension [72].

Schulte et al. compare and contrast diferent program comprehension models (from an educational perspective)
and discuss how a block model [58] for program comprehension is mapped to various other prior models [59].
Several theories were proposed in the early 1980s. Brooks introduced the concept of top-down comprehension [12],
driven mainly by a hypothesis and beacons [80] in the code. Soloway and Ehrlich used a similar model using
programming plans or rules of discourse that are used to form a mental representation [70]. Schneiderman et
al. present a bottom-up comprehension model where programmers start with individual code items to get to
higher level abstractions of what the code does [66]. Pennington et al. discuss a framework where two models,
program/control low and data low, evolve simultaneously [50]. Letovsky provides a more opportunistic model
approach where programmers use and switch between top-down and bottom-up models as needed [35]. Von
Mayrhauser et al. build on previous models to introduce an integrated metamodel that consists of a top-down
model, a program model, and a situation model [79] where programmers switch between these and build them
simultaneously.
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With respect to determining program complexity from a cognitive perspective, Duran et al. use Cognitive Load
Theory and the Model of Hierarchical Complexity that extends Soloway’s plan-based analysis of programs to a
iner granularity [21]. Ajami et al. also look at code complexity and how syntax, predicates, and idioms could
have an efect on it [3]. They found for loops to be signiicantly harder than ifs and that counting down is harder
than counting up. However, they point out that there could be other factors besides the use of known idioms and
syntactic structures that could afect code complexity, and more empirical evidence is required. Katzmarski and
Koschke provide a programmer centric view of complexity and show that this does not coincide with complexity
metrics rankings [31]. They point out that data-low metrics align better with programmer viewpoints than
control-low metrics but even that is loosely correlated. Yu et al. provide a survey on software complexity metrics
that could be used to determine task variability in program comprehension studies [83].
Izu et al. identify learning activities that address key components of program comprehension and provide

a theoretical learning trajectory to guide teachers in selecting further activities in CS courses [27]. Tshukudu
and Cutts propose a model describing how student novices are afected while learning diferent programming
languages [74]. They studied students transitioning from Python to Java and vice versa and proposed ways to
ease the transition process. Teague et al. use a neo-Piagetian framework that describes cognitive development
stages that students go through to study simple programming concepts [73]. They show that students make many
mistakes and focus on supericial aspects of the task until they reach the operational stage, at which decentration
of focus occurs. That is the point where the cognitive ability to reason about abstractions and adapt skills to
tasks that are closely related is formed. Clear et al. have published a report on the BRACElet project that has
contributed key indings on how novices learn to program [16]. They also provide guidelines for programming
problems for novices. Cunningham et al. provide support for sketching program traces on paper for code reading
that correlates with greater success on code reading problems that involve loops, arrays, and conditionals [18].
They used this concept of sketching on new task types such as code writing, code ordering, and code ixing and
found that diferent types of sketching were used for these tasks, not always with increased performance.
Not related directly to program comprehension, but generally to CS education, Nelson and Ko discuss that

although theory can be helpful in interpreting designs and results, sometimes it can also inhibit progress [45].
We need to pay special attention to this observation, especially with respect to eye tracking studies, because
we have just scratched the surface when it comes to using eye tracking as a means to learn how students and
experts work. There aren’t many studies that are conducted using eye tracking where one can do a meta analysis
to come up with a theory on how students work. We may develop a working theory on how eye movements
occur in diferent tasks but we still need more empirical evidence to validate such behaviors.

4 METHOD

The objective of this study is to assess how a student programmer approaches understanding two diferent
programming languages: C++ and Python, in two diferent task types: bug ixing and new feature addition. Each
student saw both C++ and Python code for the tasks. Eye movements were recorded during the entire study to
objectively determine what students were looking at as they performed the tasks. The tasks themselves are not
directly comparable as we wanted to avoid any learning efects however, they do use similar, semantic constructs
as shown in Section 4.3. In this section, we present the participant demographics, sampling procedures, tasks,
stimuli in the experimental design, eye tracking hardware used, the terminology used, and the tools we used to
collect measures to answer our research questions. We followed the practical guide on conducting eye tracking
experiments while designing the experiment [61].
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Table 1. Participant Demographic Information

Demographic Categories Choices �†

Gender Male 11

Female 3

Age 18-24 8

25-34 2

34-44 1

>45 3

Student Level Not a student 4

Undergraduate 6

Graduate 4

Industry Employment No 9

Yes 5

IDE ‡ Netbeans 6

Eclipse 5

Visual Studio 4

Design Skills Average 8

Above Average/Good 5

Excellent 1

Programming Skills Average 6

Above Average/Good 6

Excellent 2

Demographic Categories Choices �†

C++ Skills Beginner 5

Intermediate 5

Average 1

Advanced 3

Years of Programming Between 1 and 2 5

in C++ Between 3 and 5 3

Between 6 and 10 3

More than 10 2

None 1

Python Skills I don’t know Python 5

Beginner 1

Intermediate 5

Advanced 3

Years of programming None 5

in Python Between 1 and 2 5

Between 3 and 5 3

Between 6 and 10 1

Programming Languages ‡ Java 9

C++ 9

C 8

Python 5
† Number of participants who chose the corresponding
option in the row.
‡ Picking multiple answers was allowed.

4.1 Participant Characteristics

The participants were mainly students from a large Midwestern university in the United States. Fourteen
volunteers participated in the study.

Table 1 shows a summary of the demographic information collected from the participants. Eleven participants
were male and three of them were female. Eight participants were between 18 and 24 years old, two participants
were between 25-34 years old, one was between 34 and 44 years, and three were over 45 years old. There were
six undergraduate students, four graduate students, and four non-students (who had just graduated) among
the participants. Nine participants did not have any industry employment and experience, and ive participants
indicated that they had industry experience. Netbeans was the most used IDE among the participants, with six
participants choosing it as one of the IDEs they use for programming. Eclipse and Visual Studio were the next
popular choices, appearing in the participants’ answers ive and four times, respectively.
We asked the participants to self-report their programming skills and experience levels. Siegmund et al. [68]

state that self estimation is a reliable measurement of programming skills and experience. Eight participants
rated their design skills as average, ive rated them as above average/good, and one rated them as excellent. Six
participants rated their programming skills as average, six rated them as above average/good, and two rated their
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Table 2. List of Tasks/Stimuli Used in the Study

Stimulus Language Type LOC
Character

Count
Description

Constructs

Present

Stimulus 1 Python
Bug

Fixing
9 238

Creates the

Palindrome

of a string

Input/Output

Built-in String Functions

(join, reverse, ...)

Conditionals

Stimulus 2 C++
Bug

Fixing
26 431

Creates the

reverse of a word

or a phrase

Input/Output

Pointers

While loops

Arrays

Conditionals

Stimulus 3 Python
Feature

Addition
46 1052

Prints the position

of a number in

an array, or that it

was not found

Input/Output

While Loops

Conditionals

Class/Functions

Stimulus 4 C++
Feature

Addition
31 546

A class deining

a Stack and all

its related functions

Input/Output

Arrays

For Loops

Conditionals

Class/Functions

skills as excellent. As for programming language speciic questions, ive participants ranked their C++ skills
as beginner level, ive ranked their skills as intermediate, one ranked their skills as average, and inally, three
participants ranked their skills as advanced. Five participants had between 1 and 2 years of experience in C++
programming, three participants had between 3 and 5 years of experience, three participants had between 6
and 10 years of experience, two participants had more than 10 years of experience, and inally, one participant
had no experience in C++ programming. Subsequent questions were about the participants’ skills in Python.
Five participants said that they did not know Python. One ranked their skills as beginner level, ive ranked their
skills as intermediate, and three ranked their skills as advanced. Five participants had no experience in Python
programming, ive participants had between 1 and 2 years of experience, three participants had between 3 and 5
years of experience, and one participant had between 6 and 10 years of experience. Finally, the participants were
asked to list the languages they could program in. Java was mentioned in the answers nine times, with C++, C
and Python coming as the next most mentioned answers, respectively.

4.2 Sampling Procedures

The students were recruited from a class that taught Python as an introductory programming language. All of
the students were also knowledgeable in C++. There were no incentives for their participation. They were all
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(a) Stimulus 1 (Python Bug Fixing)

(b) Stimulus 4 (C++ Feature Addition)

Fig. 1. The Python Bug Fixing task and the C++ Feature Addition task used in the study.

in the CS program. None of them were students of the authors. The authors did not know any of the students
personally. All participation was voluntary and done via an announcement. The study took place in a quiet eye
tracking lab where only the moderator and the participant were present without any outside distractions. The
moderator was there to ensure the participant was seated at the correct distance from the eye tracker and to
perform the calibration. They did not interact with the participants during the experiment. The University’s
Institutional Review Board approved the study prior to its implementation.
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4.3 Conditions and Design

The four diferent combinations of programming language and task types used in this experiment are listed
in Table 2. A high level description of the programs and the programming constructs that are present in the
program are also listed. Two tasks were presented in Python, and two were presented in C++. From each language
category, one task was a bug ixing task, and the other was a feature addition task.

For the bug ixing tasks, we asked the participants to ind the bug located in the program, write the line number
they thought contained the bug, and attempt to ix the bug. They were also given the expected input and output
of the program. For the feature addition tasks, we gave the participants a description of the program’s current
capabilities and a description of an additional feature that they had to implement. Figure 1 shows Stimulus 1 and
Stimulus 4. A complete replication package with all the tasks, programs, and eye movement data is available
at [40].
Participants were given all four tasks in randomly generated order. They had access to the source code in

Geany2, the console output of the program, and the requirements of the task. Requirements included the expected
input and output for the bug ixing tasks and the additional feature that needed to be implemented for the feature
addition tasks. Figure 2 shows an image of the screen setup and these three areas. There was a trial task given to
familiarize participants with the IDE setup so they could ask questions. We did not collect eye tracking data for
the trial task.
We now provide some rationale for why we chose these two types of tasks (new feature and bug ix). As

developers, we perform a variety of tasks on a daily basis, such as bug ixing, feature addition, refactoring, code
review, testing, reading requirements, reading to comprehend code, summarizing code, and many more. Almost
all of the eye tracking studies in program comprehension are on tasks that involve participants summarizing
Java code, and very few are on ixing bugs. There are none on adding new features. Moreover, all studies (except
for a few) are on short code snippets and all on Java. Besides Turner et al. [75] there are no published studies
looking into eye movements on Python that we are aware of. It has been shown by Abid et al. that results derived
from short code snippets are not always consistent with when you use realistic programs within an IDE to test
developers [2]. To bridge this gap, we chose two of the activities we believe developers spend a lot of time on i.e.,
ixing bugs, and adding new features. In the future, we will add more task categories as provided by Murphy et
al. [44].
The goal of this paper was to see how participants fare on diferent types of tasks. The tasks themselves are

diferent categories and should not be considered comparable. The goal was to see how the same individual’s
eye movements difered between the diferent types of tasks. The two tasks chosen are representative of what
software developers typically do i.e., ix bugs and implement new features, as also evidenced by many issue
tracker systems in open source projects.

Our underlying assumption (based on theoretical frameworks such as [18] that looked at diferent tasks albeit
without eye tracking) is that bug ixing and new feature tasks would require diferent levels of comprehension and
problem solving skills. For bug ixes, developers generally start with the bug report and/or expected input/output
and try to igure out which line the bug is on by tracing backward to ind the line via stack traces or some other
tracing method. With new feature tasks, developers do not do as much tracing since they are implementing
forward based on the requirements they read and what the expected feature should do. Because of these reasons,
we believe that solving these tasks would generate diferent user behaviors.

For the bug ixing tasks, the requirements of the task were somewhat comparable. One task reverses a word
or phrase (C++) and the other creates a palindrome (Python). The new feature tasks, however, were slightly
diferent, albeit they used similar constructs listed in Table 2. Since the study design is within subjects, giving
very similar programs across languages would cause learning efects that we wanted to avoid. Since we recruited

2Geany IDE: https://www.geany.org/
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our participants from a Python class, we also wanted to make sure we chose stimuli with concepts already taught
in the class. We asked the instructor for their syllabus and weekly schedule to ensure we used programs and
concepts that was known to the students. We did not use verbatim any code from the class itself. We were not
instructors for the course.
Note that the goal of this paper was not to do a side by side comparison of the same task in C++ vs. Python.

Instead, it was to see how each participant understood C++ vs. Python in two task categories. In order to account
for the diference in lines of code in the tasks, we make sure we normalize our ixations per character because
otherwise, longer programs will always have more ixations as there is more to read (see Section 4.6 for more
details on normalization). For future work, we plan to evaluate diferent program complexities [3, 21] within
each task category. However, task complexity was not the scope of this paper.

After each task, we asked the participants to rate the diiculty of the tasks, with the options: łEasy", łAverage",
and łDiicult". For the statistical analysis, we assigned the numbers 1, 2, and 3 to these choices, respectively.
We also asked the participants to rate their conidence level about each task, with the options łNot Conident",
łSomewhat Not Conident", łSomewhat Conident", and łVery Conident". For the statistical analysis, we mapped
these choices to the numbers 1, 2, 3, 4, respectively.

4.4 Terminology

We provide deinitions for basic terminology we use throughout the paper to help provide the reader with context
for our study.
Program comprehension is a sub-ield of software engineering/computer education that deals with a user

building a mental representation (albeit subjective) of the code while solving a task.
Task Type refers to the various possible types of tasks a developer (in this case, a student) may engage in.

Possibilities could be bug ixing, new feature addition, refactoring, code review, testing, etc. In this paper, we
only evaluate two task types (bug ix and new feature addition).

Task refers to the actual set of artifacts that falls into the speciic task category. For a bug ix task, this would
be the code in the IDE, the program requirements, and expected input and output of the program. For the new
feature task it would be the starter code in the IDE, current description of the program, and a description of the
additional feature to be implemented. In both cases, the console output was also available to the participant. The
participant is expected to engage with these artifacts to produce a result. In the case of the bug ixing task, the
result would be the line that had the bug and a ix for the bug. For the new feature addition tasks, the result
would be the newly written code that implements the new feature.

Bug localization (in our study) refers to the time when the participants read the line containing the bug, prior
to any edits made, but do not ix the bug.

Stimuli is eye tracking terminology and simply means anything that is tracked on the screen by the eye tracker.
In our case, the Geany IDE was the main stimulus that contained within it all the artifacts that the participant
saw.

Chunks refer to a line or set of contiguous lines of code with a speciic logical and semantic meaning. We also
refer to them as beacons [6, 80].

Areas of Interest (AOI) refer to parts of the stimulus on which eye tracking metrics are recorded. Examples
could be chunks in the code editor, the requirements area of the IDE, or the console output. The AOI is usually
deined by the researcher.

Fixation is the stabilization of the eyes on an object of interest for a certain period of time. Fixations are made
up of multiple raw gazes and have a duration associated with them which we refer to as the ixation duration.
Most processing happens during ixations which is why they are a standard measure in most eye tracking studies.
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Scanpath refers to the directed path formed by saccades between ixations. It determines how the eye navigates
across the stimuli.

Reading behavior refers to the percentages of ixations that appear on the various AOIs in question.
Navigation behavior refers to the scanpath on source code over time.
Editing refers to the act of modifying the code in order to ix a bug or implement a new feature.

4.5 Procedure

We present the study procedure, including experimental setup, eye tracking hardware, and discuss the steps for
pre-processing the eye tracking data to produce ixations on parts of the stimuli.

4.5.1 Experimental Setup - Study Environment. The experimental suite Tobii Studio was used to record all the
eye tracking data. We set up Tobii Studio to record the computer’s desktop so everything that appeared on the
desktop during the study was recorded. This way, when we opened the Geany IDE, all eye tracking data was
collected on the Geany IDE. The stimuli given were not images. Rather, the entire screen was a stimulus. Thus,
anything looked at on the screen was recorded. Note that Tobii Studio is limited in processing eye movements
with scrolling and context switching on desktop stimuli. In order to overcome this limitation we did a manual
post processing step to detect scrolling and appropriately used keyframing available in Tobii Studio to detect the
correct element that was looked at in the presence of scrolling. This was a manual time-consuming process. An
example of how the desktop looked like is shown in Figure 2. The left part of the image shows the Geany IDE
containing the source code. The top right part of the image shows a text document containing the requirements,
input, and expected output. The bottom right part of the image shows the console output.

4.5.2 Eye Tracking Apparatus. The Tobii X60 eye tracker was used for the data collection and recording gaze
data. It is a remote eye tracker with a 60Hz sample rate and an accuracy of 0.5 degrees. A nine point calibration
was used prior to starting the study for each participant. The monitor used was a 24-inch LCD monitor at a
1280*1024 resolution.

The IV-T ixation ilter [5] was run on the raw gazes and exported out of Tobii Studio for analysis. An
interpolation to ill in missing gazes of up to 75�� was used. A velocity window of 20�� and a velocity threshold
of 30 degrees per second were used to calculate the initial ixations. Adjacent ixations separated by less than 75
�� and 0.5 degrees are merged and ixations less than 60�� are discarded.

4.5.3 Areas of Interest (AOI). In order to make sense of the eye tracking data, one irst needs to deine an area of
interest (AOI) it falls under. Areas of interest are typically parts of the stimuli one is interested in observing. Areas
of Interest (AOI) are created in the form of rectangles over the screen recording of participants completing the
tasks. Tobii Studio was used to create these AOIs and map participant’s ixations to the correct AOI. Two levels
of AOIs were used. The top level category of AOIs is the three diferent sections shown in Figure 2. The three
AOIs represent Source (the window that contains the source code), Requirements (the window that contains
the requirements for the task), and Console Output (the output window used when running the program).

In addition to the top level AOIs listed above, there were some additional AOIs based on the source code. These
AOIs are mostly deined as a single line of code. However, several AOIs that contain multiple lines of related
code in a single chunk (also referred to as a beacon). As these are related to the code, these AOIs will difer
between each stimulus. In addition, several of our programs required scrolling to view the entire program. In
order to ensure that ixations were correctly mapped to the right AOI even when scrolling occurred, the AOIs
were manually mapped in a post processing step onto the lines of code during scrolling so the ixation mapping
would be correct. Note that the eye tracker is not aware that the items on the screen moved during a scroll (all it
keeps track of is the x,y coordinate in pixels on the screen that the user is looking at) and does not automatically
map gaze to the moved line, which is why we did this manually. The keyframing feature in Tobii Studio was used
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Fig. 2. The three top level AOIs: Source, Requirements, Console Output

to keep track of where on the screen the scroll happened and the corresponding AOI was moved accordingly so
the gaze context is maintained. This process is not completely automatic and took considerable time for all four
tasks for each participant. Another student thoroughly spot checked the post processing keyframing to ensure
they were done correctly. In addition, each line visible in the Geany IDE was mapped in a manual post processing
step (after the keyframing was done) via our custom scripts. This was the best option to get line-level data from
the editor.
Once a participant made an edit to the source code, we stopped mapping the source code AOIs as what the

participants would be looking at in the AOIs may not correspond to the original source code. The new feature
tasks involve a lot of editing. This means adding/removing code at diferent points in time as the task progresses.
Tracking what a developer looks at while editing code is not a trivial problem. Currently, the state of the art does
not support tracking gaze while editing in a clean manner to accurately tell what the person is looking at as the
code is constantly being changed. This is simply because of how eye trackers work. Most studies done even in
psychology, where eye tracking is very prevalent, only focus on static images and videos with large areas that
are relatively unchanged. Because of this limitation, we chose not to report ixations on partial tokens of code (as
they are written). We do not believe this data would be useful for interpretation. Instead, we report on the lines
added and time to irst edit, which we believe is a better metric for the new feature addition task. We are aware
of only one community eye tracking infrastructure iTrace [23] that supports editing via an Atom extension [22]
but even that is limited. This study was not done using iTrace or Atom. For this reason, we opted for the more
traditional editing measures when looking at behaviors while performing the new feature tasks. We report on
details on overall ixation count and durations for the new feature tasks without the editing involved in RQ1
(diferences in programming language) and RQ2 (diferences in task type).
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Table 3. Measures used for each of the Researchuestions

Research
Metric Deinition

Question

RQ1, RQ2 Accuracy Accuracy of a task

RQ1, RQ2 Time The time participants took to complete a task

RQ1, RQ2 Total Fixation Count The total amount of ixations for a given task

RQ1, RQ2
Total Fixation Count The ixation count adjusted for the total

Per Character characters of code in the stimulus

RQ1, RQ2 {AOI} Fixation Count The total ixation count for the speciied AOI

RQ1, RQ2 Total Fixation Duration The sum of ixation durations for a given task

RQ1, RQ2
Total Fixation Duration The ixation duration adjusted for the

Per Character total characters of code in the stimulus

RQ1, RQ2 {AOI} Fixation Duration The total ixation duration for the speciied AOI

RQ1, RQ2 Average Fixation Duration The average ixation duration for a given task

RQ3
{AOI} Fixation The {AOI} ixation duration as a percentage of the

Duration Percentage total ixation duration on the stimulus before edits

RQ3 Alpscarf Plots
Visualizes gaze transitions on speciied AOI across time

before edits

RQ4 Time Till First Edit
The amount of time until a participant begins to edit

the source code

RQ4 Time Till First Edit Percentage
The amount of time until a participant begins to

edit the source code in percentage of total time

RQ4 Lines Added
The amount of additional lines added to the

source code during a feature addition task

4.6 Measures

The measures used in this experiment are based on best practices guidelines reported in the ield of program
comprehension, software engineering, and eye tracking [61]. We direct the reader to Duchowski et al. [20] for
a detailed theoretical description of all eye tracking measures. Table 3 describes the metrics used to compare
participants’ behavior while working on the four tasks. We specify the research questions, the metrics used to
answer the questions, and the deinition of the metrics. We chose metrics based on ixations, a group of metrics
used in eye tracking studies in software engineering [60, 61] that are used to measure visual efort. In prior
studies, areas of interest with higher ixation count and duration are believed to have attracted more visual
attention or that understanding them required more efort [61, 63, 64]. We calculated the total ixation count and
duration over the given tasks, per character and speciic AOIs. Furthermore, we calculated the mean ixation
duration during each speciic task as well. The ixation count and duration serve as a measure of visual efort
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when it comes to solving the diferent types of tasks (bug ixing and feature addition) and comparing the diferent
programming languages (Python and C++) in our research questions.

Next, we explain why we use the ixation count per character as a metric. In order to compare eye tracking data
across the diferent programming languages, we irst need to normalize the data. The programming languages
C++ and Python have very diferent semantic structures and diferent lines of code. There might not be a direct
equivalent construct between the languages. In order to account for the diference in lines of code in the tasks,
we make sure we normalize our ixations because indeed longer programs will have more ixations. We account
for this in our analysis by normalizing by character. To do this we divide eye movement duration over a token.
So if the total ixation duration is 400�� on a token of 4 characters, the normalized total time is 100�� . This has
been done in prior work as well by Madi et al. [38] and Abid et al. [2].

5 EXPERIMENTAL RESULTS

In this section, we irst present the participants’ conidence levels for each task, and then present our indings for
each research question. The accuracy of the bug ixing tasks was graded as correct/incorrect, by determining
whether the participants found and ixed the bug correctly. The accuracy of the new feature tasks was based
on whether or not the feature was correctly implemented. The time on task was measured via the eye tracking
software by determining the start and end time markers in the eye tracking data for each task. On average, the
participants spent 37.3 (± 19.8) minutes working on all tasks.

5.1 Confidence Levels

Given that some of our participants stated that they did not know Python, we looked at their conidence levels in
their answers and understanding of each task. This information showed us that even though these participants
did not consider themselves knowledgeable in Python, they mostly had a good understanding of the tasks, and
we believe that due to this fact, we can include them in the analysis for answering the research questions. The
following is the description of conidence levels for each task. Since all the participants were recruited from the
same Python course, they were all learning Python. We asked the students to łRate your Python programming
skills" and they had the following choices: łI don’t know Python", łBeginner", łIntermediate", and łAdvanced".
We also asked them to łSelect years of experience in programming with Python", and the choices were: łNone",
łBetween 1 and 2", "Between 3 and 5", łBetween 6 and 10", łMore than 10". We believe some of the students
misunderstood these questions as asking about experiences prior to taking the course.

5.1.1 Bug Fixing Task in Python. The participants generally had high conidence levels about their answers for
this task. Eleven participants were very conident about their answers, including three who stated that they did
not know Python. Two participants were somewhat conident about their answers. Only one participant, one who
did not know Python, was not conident in their answer. The participants who stated they were very conident or
somewhat conident about the task answered correctly. In contrast, the only participant who answered the task
incorrectly was the one who was not conident in their answer.

5.1.2 Bug Fixing Task in C++. The participants were mainly very conident about their answers to the bug ixing
task in C++. All the participants stated that they knew C++. Of the 14 participants, nine were Very Conident about
their answers to this task. One participant was Somewhat Conident in their answer, whereas one participant was
Somewhat Not Conident in their answer. And inally, three participants were Not Conident in their answers.
Additionally, every participant with high conidence in their answer and understanding of the task answered
correctly.

5.1.3 Feature Addition Task in Python. The participants were mainly conident about this task as well. Two
participants, who stated that they did not know Python, did not try to solve this task and had no answer to the
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conidence level question. Nine participants stated that they were very conident about their answers. Two of
these participants did not know Python, but they were very conident in their answers to the task. One person was
somewhat conident about their answer, while two people, one of whom did not know Python, were somewhat
not conident about their answer. And inally, one person who stated that they did not know Python was not
conident about their answer. The results show that out of the ive participants who said that they did not know
Python, three tried to solve the task. Two of them were very conident, and one was somewhat not conident. The
conidence level and the score did not show a clear relationship. All seven participants who felt they answered
the task correctly were very conident about their answers. In contrast, the participants who did not answer the
task correctly had varying conidence levels in their answers.

5.1.4 Feature Addition Task in C++. Finally, we observed that the participants were mostly conident about the
feature addition in C++ task. Three participants said that they were not conident in their answers. None of these
three participants added any lines to the program. Two of these three participants did not try the Python feature
addition task either. Eight participants were very conident in their answers, and three were somewhat conident.
The participants who were either somewhat or very conident answered the task correctly, and the other three
participants did not get a score because they did not try solving the task.

5.1.5 Observations. Our observations from the Python bug ixing task indicate that only one of the participants
who claimed that they did not know Python was not conident about their answer and understanding of the
program, and that person did not answer the task correctly. In contrast, the other four participants who claimed
no Python knowledge stated that they had high levels of conidence about their understanding and answer to this
task, and they answered the task correctly. Interestingly, we had more participants who did not feel conident
about the bug ixing task in C++, even though all participants had stated that they knew the C++ language and
had experience with it.

Furthermore, the conidence level of the feature addition tasks shows that three out of four participants who
were not conident (either not conident or somewhat not conident) in the Python task were also not conident
in the C++ task. This can imply that these participants had trouble with the feature addition tasks in general, and
their claimed lack of knowledge in Python might not have been the most critical issue.

Based on these observations, we believe that it is more beneicial to keep the study data from the participants
who claimed that they didn’t have experience with Python, as their lack of experience did not afect their
performance in Python tasks drastically. In addition, they were recruited from a class that taught Python.

5.2 RQ1: Reading diferences between C++ and Python tasks

Research question 1 asks about the reading and navigation diferences between C++ and Python tasks. The null
and alternate hypotheses for this question are as follows.
��0 The programming language used for the tasks does not afect the visual efort of the participants working

on those tasks.
��� The programming language used for the tasks afects the visual efort of the participants working on

those tasks.
To test our hypothesis, we calculated accuracy, time, overall ixation count and duration, and AOI ixation count

and duration for the tasks. Note that we use ixation metrics as a proxy for visual efort as stated in Section 4.6.
We then compared these metrics in diferent languages. Table 4 summarizes the metrics for this research question
and shows the statistical tests for language based diferences in reading and code navigation.

5.2.1 Accuracy and Time. The irst metrics we investigate are the time participants took to complete a task and
the accuracy of the task. These two metrics together can provide insight into the diiculty of the tasks based on
the programming language. Overall, we found that a single task took 586.1 seconds on average to complete, and
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Fig. 3. Accuracy of Tasks By Stimulus

Fig. 4. Time To Complete Tasks By Stimulus (Outliers removed for scale)

there was an overall task accuracy of 73.33%. We also found that tasks written in Python took 543.7 seconds to
complete, while tasks written in C++ took 628.4 seconds to complete. We also found that both Python and C++
tasks had an overall accuracy of 71.43%. Figure 3 is the bar chart showing the percentage of accurate answers
from the participants for tasks from each language, and Figure 4 is the boxplot showing the total time taken
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Table 4. Language-based Diferences

Metric AOI Python C++ �-value‡ Efect

(for eye tracking metrics) Tasks Tasks Size‡

Time (Seconds)† N/A 543.7 628.4 0.8302 0.0333

Accuracy (%)† N/A 71.43 71.43 - -

Total Fixation Overall (normalized per character) 2.52 2.44 0.8665 0.0178

Count Source Code 955.21 859.82 0.7793 0.0255

Requirement 170.93 185.32 0.2104 0.0484

Output Console 170.39 90.82 0.0476∗ 0.2997

Total Fixation Overall (normalized per character) 0.612 0.570 0.9019 0.0280

Duration (Seconds) Source Code 212.00 206.91 0.7793 0.0051

Requirement 38.63 39.63 0.6295 0.0230

Output Console 34.08 19.08 0.0402∗ 0.3023

Average Fixation
Overall 0.219 0.217 0.7282 0.0102

Duration (Seconds)
† Time and Accuracy are not eye tracking metrics, and AOI is not applicable.
‡ �-values are calculated by the Mann-Whitney test, and Efect Size is Clif’s Delta.
* � < 0.05

to complete each type of task among the participants. The outliers are removed by Python’s plotting function,
which uses the Interquartile Range Rule to detect outliers.

5.2.2 Fixation Count. Next, we investigate the number of ixations from participants during the tasks. Overall,
participants had 1255.07 ixations across all tasks, including all ixations on the Source Code, the Requirements,
and the Output Console. However, to see the efect of programming languages on this metric, we must compare
the programming languages. First, we found that tasks written in Python had, on average, 1346.64 ixations,
while tasks written in C++ had, on average, 1163.50 ixations. Source code length can play a role in ixation count.
The longer the source code (or any type of written text) is the more ixations are required to read through and
understand it, so it is important to control for ixation count as a function of the total character count of code
in the stimulus. We show the total ixation count normalized by character count metric in Table 4, as well as
Mann-Whitney tests comparing the metric overall. The table also reports the overall and AOI speciic number of
Total Fixation Count and Mann-Whitney U tests, looking at the diferences between the metrics across diferent
programming languages. We found signiicant diferences in the Total Fixation Count on the Output Console

AOI between the two languages (Mann-Whitney U � = 0.0476, small Clif’s Delta (� = 0.2997)).

5.2.3 Fixation Duration. Next, we look at the Total Fixation Duration in seconds overall and over the diferent
AOIs. Looking at the total ixation duration during the tasks, we can see that the overall ixation duration for a
task is, on average, 288.29 seconds. However, as with the ixation count metric, we must compare programming
languages. First, we found that tasks written in Python had a total ixation duration of 304.7 seconds on average,
while tasks written in C++ had a total ixation duration of 271.9 seconds. We report the normalized per character
total ixation duration, the total ixation duration over diferent AOIs, and Mann-Whitney U test results comparing
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Table 5. Task-based Diferences

Metric AOI Bug Feature �-value ‡ Efect Size ‡

(for eye tracking metrics) Fixing Addition

Time (Seconds) † N/A 474.1 690.8 0.0286∗ 0.3304

Accuracy (%) † N/A 79.31 67.74 0.3200 0.1157

Total Fixation Overall (normalized per character) 3.05 1.91 0.0298∗ 0.306

Count Source Code 748.5 1066.54 0.0635 0.2385

Requirement 130.42 225.82 < 0.001∗ 0.471

Console Output 98.96 162.25 0.1299 0.1632

Total Fixation Overall (normalized per character) 0.757 0.452 0.0098∗ 0.306

Duration (Seconds) Source Code 185.8 330.9 0.1315 0.1403

Requirement 30.69 47.63 0.0009∗ 0.355

Console Output 22.67 30.77 0.2741 0.0663

Average Fixation
Overall 0.227 0.209 0.0002∗ 0.1939

Duration (Seconds)

† Time and Accuracy are not eye tracking metrics, and AOI is not applicable.
‡ �-values are calculated by the Mann-Whitney test, and the Efect Size is Clif’s Delta.
* � < 0.05

the two languages in Table 4. The tables show that there are signiicant diferences between the total ixation
duration on the Output Console between the tasks in diferent languages (Mann-Whitney U � = 0.0402, small
Clif’s Delta (� = 0.3023)). Finally, we did not see any signiicant diferences between the average ixation duration
throughout the tasks in diferent languages.
RQ1 Finding: The results show that the participants ixated more and longer on the Console Output AOI

while working on Python tasks, and the diference is statistically signiicant. Based on the results, we can reject
the null hypothesis ��0.

5.3 RQ2: Reading diferences between bug fixing and feature addition tasks

We present the null and alternate hypotheses for the research question on task type diferences.
��0 The task type (bug ixing vs feature addition) does not afect the visual efort of the participants working

on those tasks.
��� The task type (bug ixing vs feature addition) afects the visual efort of the participants working on those

tasks.
Once again, we calculated accuracy, time, overall ixation count and duration, and AOI ixation count and

duration for the tasks for testing our hypothesis. Table 5 summarizes the metrics for this research question and
shows the statistical tests for task-based diferences in reading and code navigation.

5.3.1 Accuracy and Time. We found that, on average, bug ixing tasks took signiicantly less time to complete.
We report the accuracy and time in Table 5. The Mann-Whitney U test shows that the diference in the time
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working on the two types of tasks is statistically signiicant (� = 0.0286) with a medium efect size according to
its Clif’s Delta (� = 0.3304).

5.3.2 Fixation Count. We investigate the efect of task type on ixation count. We found that bug ixing tasks, on
average, had 1005.79 ixations, whereas the feature addition tasks had, on average, 1504.36 ixations throughout
the task. We could not ind a statistical signiicance in the diferences. After normalizing these ixation count with
the character count of the stimuli, we found signiicant diferences between the two task types after running a
Mann-Whitney test (� = 0.0298) with a medium efect size according to its Clif’s Delta (� = 0.306). We looked at
the Total Fixation Count between the diferent AOIs in diferent types of tasks, shown in Table 5. We found that
the only signiicant diference in ixation count is between the ixations on the Requirement AOI (Mann-Whitney
U � < 0.001, medium Clif’s Delta (� = 0.471))).

We can see that while feature addition tasks had signiicantly more ixations, after controlling for the stimulus
length, these tasks had signiicantly fewer ixations than bug ixing tasks. This indicates that although participants
did not spend as much time and had fewer overall ixations on the bug ixing tasks, the bug ixing tasks were
read more thoroughly than the feature addition tasks.

5.3.3 Fixation Duration. We also report on the efect of task type on ixation duration in Table 5. We found
that bug ixing tasks, on average, had a total ixation duration of 245.7 seconds, while feature addition tasks
had, on average, a total ixation duration of 330.9 seconds. We report the normalized per character ixation
duration in Table 5, and we see that there is a signiicant diference in the metric between the two types of tasks
(Mann-Whitney U � = 0.0098, small Clif’s Delta (� = 0.306)). Investigating the Total Fixation Duration over
the diferent AOIs, we only saw a signiicant diference in the metric on the Requirement AOI (Mann-Whitney
U � = 0.0009, medium Clif’s Delta (� = 0.355)). Finally, results show that there is a signiicant diference
between the Average Fixation Duration in the two types of tasks (Mann Whitney U � = 0.0002, small Clif’s Delta
(� = 0.1939)).

RQ2 Finding: Overall, the results show signiicant diferences in the Total Fixation Count and Total Fixation
Duration overall (normalized per character), indicating that participants had more frequent and longer normalized
ixations overall in the bug ixing tasks. Furthermore, participants had signiicantly longer and more frequent
ixations on the RequirementAOI in the feature addition tasks. There was also a signiicant diference between the
Average Fixation Duration over all AOIs. These diferences give us enough evidence to reject the null hypothesis
(��0), showing that the diferent types of tasks afect the reading and navigation patterns.

5.4 RQ3: Problem solving behavior in bug fixing tasks

Next, we turn our analysis to the two bug ixing tasks. To address the third research question, we look at the
scan patterns (scan paths) of the participants and the distribution of ixations on the buggy lines. This research
question is exploratory in nature and does not have a formal hypothesis. Since we stop mapping gazes to lines
when we detect edits (refer to Section 4.5.3 for more information), we report eye gaze distributions in this section
until the irst edit. We refer to this as the bug localization phase. Note that there were a lot fewer edits in the bug
ix task since most bugs were limited to 1 line and required minor changes.

5.4.1 Visualization of Scan Paterns. To visualize the scan patterns of the participants while they were working
on the bug ixing tasks, we used the augmented scarf plots generated by the Alpscarf [81] web application. Note
that this visualization is similar but more rich in how it conveys eye transitions between the diferent lines and
chunks of code compared to the scan patterns shown by Uwano et al. [77] and Sharif et al. [63]
Scarf plots are used in eye tracking research to visualize gaze transitions among areas of interest over time.

They become less efective when there are a higher number of AOIs in a study, and Alpscarf presents a way to
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Fig. 5. Alpscarf Showing Scanpath and Proportional Fixation Duration on Lines for Each Participant During C++ Bug

Localization

Fig. 6. Alpscarf Showing Scanpath and Proportional Fixation Duration on Lines for Each Participant During Python Bug

Localization ACM Trans. Comput. Educ.
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(a) Fixation Duration Percentage of

Line Containing Bug in Stimulus 1 (Python)

(No incorrect answers)

(b) Fixation Duration Percentage of

Line Containing Bug in Stimulus 2 (C++)

(Correct and incorrect answers)

Fig. 7. Timeline of the percentage of time spent looking at buggy lines in Python and C++ Stimuli.

visualize the transitions and includes order conformity and revisits. We plotted the ixations on the diferent lines
of the bug ixing tasks’ source code (or groups of lines (chunks), as speciied in Tables 8 and 6) over the entire
duration of working on the task until inding the bug and before the irst edit. The application gives us multiple
options for visualization, and we chose the Duration-focus and Normalized plot. In the duration-focused plots, as
seen in Figures 5 and 6, the width of each bar specifying a ixation is proportionate to the ixation duration. By
using this option, we can see both the transitions the reading order, and the relative time spent on speciic lines.
We also chose the normalized view, which results in all the scarf plots being the same width despite the various
number of transitions or the diferent ixation times and overall duration of the task. We chose this option for the
better visibility of the data, as some participants spent a relatively longer time than others. The normalized view
helps in comparing the Alpscarfs to better discover patterns. In the Alpscarfs, the mountains (the hills over the
ixations) represent conforming to the expected ixation order (such as reading a program line by line), and the
valleys represent the revisits over the AOIs.

Figures 5 and 6 show the Alpscarfs of the ixations of eleven people. The ixations on the line containing the
bug are speciied with the color red. A green checkmark is placed next to the participants who answered the
tasks correctly, and a red X is placed next to those who answered incorrectly. As mentioned earlier, we do not
have any source code ixations for P6 and P12. Thus, these participants are not included in the visualization.
P12 completed both tasks incorrectly, and P6 completed both tasks correctly. Furthermore, for better visibility
of the data visualization in the paper, we removed the Alpscarf of P9 in Figure 5, as that participant spent an
unusually long time on the task. Despite the normalization of the width of the Alpscarfs, the scan pattern of P9
was not observable. We also removed P8 from Figure 6, as that participant only ixated on one area of interest
(PrintNeg), and there was no pattern to be studied. The scan patterns that were removed from the paper to
increase readability are included in the replication package [40].

For the bug ixing tasks, a bug was introduced on a single line of the source code. Knowing when participants
identiied the bug is essential to understanding the problem-solving behavior of the participants. To investigate
the timing of when participants looked the buggy line while working on the task, we segmented the data into ten
sections. We computed the percentage of the time spent ixating on the line containing the bug out of the time
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spent ixating on any line in the program. We then compared these percentages. These bug localization ixation
duration distributions can be seen in Figure 7a for Stimulus 1 (Python) and in Figure 7b for Stimulus 2 (C++).
We see a pattern of initial decrease of the ixations on the line containing the bug in the Stimulus 1 bug

localization timeline. It seems to indicate that participants read past the bug in the program, potentially while
reading for comprehension, and returned to the line containing the bug after reading other parts of the program.
Figure 6 conirms that most participants spent time looking at the line containing the bug at the beginning of the
task. The Alpscarf shows participants looking at the buggy line more and longer at the beginning stages of the
task and coming back to it again later on (Line Reversed). This is expected since, in these two stimuli, the bugs
are located in a similar relative position in the code: line 5 of 9 in Stimulus 1 and line 15 of 26 in Stimulus 2. As
such, the initial reading of a program should look similar if participants read past the line containing the bug.
We analyzed Stimulus 2’s bug localization timeline to compare the participants who correctly found and

corrected the bug and those who failed to ind and correct the bug. However, due to the limitations of source
code AOI mapping mentioned in Section 4.5.3, we could not ind ixations on any source code AOIs for two
participants, P6 and P12. P12 completed both tasks incorrectly, while P6 completed both tasks correctly. All the
other participants working on Stimulus 1 completed the task correctly. As for Stimulus 2, aside from P6 and P12,
eight participants submitted the correct solutions to the task and four participants gave incorrect answers to the
task.

Looking at overall patterns in the bug localization timelines for Stimulus 2 (Figure 7b), we see that the segment
with the highest percentage of duration time spent on the line containing a bug occurs within the irst 20% of
the timeline. This indicates that participants spent signiicant time at the beginning of the bug localization task
looking at the line containing the bug. This is also conirmed by Figure 5, in which we can observe that most
participants have ixated on line IfLine2 containing the bug early in the task.
Comparing the bug localization timeline between correct and incorrect solutions can lend insight into the

participants’ diferent behaviors. We notice in Figure 5 that the participants with incorrect answers (P01, P07,
P11, P13) had a higher percentage of ixations on the line containing the bug in the middle of the task. This can
also be seen in the timeline data (Figure 7b). However, the participants who answered the task correctly, mostly
looked at the line containing the bug at the beginning of the task.

5.4.2 Context of Fixations on Line Containing Bug. The bug localization timeline focused on identifying when
participants looked at a line containing a bug, but it did not help us understand the context of those ixations.
We wanted to understand whether the participants were reading the program in a linear order or if they were
relating another line to the line containing the bug. Investigating this context allows us to get a better sense of
the participant’s strategy to locate the bug.
To learn the context of what was looked at before ixations on the line containing the bug, we speciied a

criterion and iltered the ixations based on that criterion. Our criteria were "ixations within ive ixations of
a ixation on the line containing the bug." Some of the ixations that fall into this criteria are ixations on the
line that contains the bug, but we do not include those ixations. This windowed ixation dataset can then allow
us to understand the context of the ixations on the line containing the bug by contrasting it with the overall
distribution of ixations on the stimuli.

We irst analyze the distributions of Stimulus 2 (C++) shown in Table 6. The distribution of ixation duration on
the source code AOIs is reported on the overall dataset and the windowed ixation dataset. We can see that there
exist several diferences between these two distributions. First, the line containing the bug, IfLine2, makes up a
larger percentage of ixation duration in the windowed context. In addition, the line AOIs immediately before
and after IfLine2 also make up a large ixation duration percentage. This shows that participants looked at the
lines closer to the bug before reading the line containing the bug.
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Table 6. Overall Source Code AOI Distribution Vs Windowed Source Code AOI Distribution For Stimulus 2 (C++)

* indicating where the bug is located

Line Code Overall Windowed

Duration Duration

Main

#include <iostream>

7.98% 9.40%

#include <string.h>

#define MAX_SIZE 256

using namespace std;

int main()

Cout

char word[MAX_SIZE];

9.84% 8.45%cout <<"Please enter a phrase to be translated: ";

cin.get(word, MAX_SIZE);

IfCond if(strlen(word) >0) 6.58% 7.26%

IfLine1 char* first = &word[0]; 6.26% 16.17%

IfLine2* char* last = &word[strlen(word)]; 8.37% 22.83%

WhileCond while(first <last) 15.33% 21.91%

WhileLine1 char tmp = *first; 8.36% 7.68%

WhileLine2 *first = *last; 8.64% 7.93%

WhileLine3 *last = tmp; 10.85% 8.33%

WhileLine4 ++first; 6.88% 3.99%

WhileLine5 –last; 6.14% 3.75%

Output - 7.00% 2.74%

Comparing participants with a correct solution and incorrect solutions in Table 7, we can see that diferences
in the windowed ixation datasets exist between these participants. First, participants with an incorrect solution
looked at the source code AOIs above IfLine2 for a longer percentage of time than participants with a correct
solution. The high percentage of ixation duration on the irst AOI, Main, indicates that they started from the
top of the program and read to the line containing the bug multiple times throughout the task. This pattern
can be observed in Figure 5 in participants who answered the task incorrectly. In addition, we see that the AOI
immediately after IfLine2 is looked at with a lower percentage of ixation duration than participants who
correctly found the bug, indicating that they did not regress to the line containing the bug from the WhileCond
AOI as often.

Overall, it seems that participants with a correct solution seem to have ixations that are focused on lines that
are physically close to the bug before looking at the line containing the bug. We can also observe this in Figure 5,
which shows us that the participants with correct answers spend signiicant time looking at the line WhileCond.
This is in line with the indings of Peterson et al. [52], stating that participants view related lines together. The
replication package contains the entire source code mapping of lines with the line mnemonic label we use here
(i.e., WhileCond and such).
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Table 7. Windowed Source Code AOI Fixation Duration Distribution For Correct vs Incorrect Solutions For Stimulus 2 (C++)

* indicating where the bug is located

Line Code Correct Incorrect

Solution Solution

Main

#include <iostream>

3.03% 15.14%

#include <string.h>

#define MAX_SIZE 256

using namespace std;

int main()

Cout

char word[MAX_SIZE];

8.26% 9.20%cout <<"Please enter a phrase to be translated: ";

cin.get(word, MAX_SIZE);

IfCond if(strlen(word) >0) 5.24% 11.43%

IfLine1 char* first = &word[0]; 14.00% 21.28%

IfLine2* char* last = &word[strlen(word)]; 24.14% 20.05%

WhileCond while(first <last) 23.52% 13.00%

WhileLine1 char tmp = *first; 8.87% 12.27%

WhileLine2 *first = *last; 7.34% 10.90%

WhileLine3 *last = tmp; 10.33% 3.49%

WhileLine4 ++first; 4.47% 0.69%

WhileLine5 –last; 4.16% 2.09%

Output - 2.25% 4.74%

Table 8. Overall Source Code AOI Distribution Vs Windowed Source Code AOI Distribution For Stimulus 1 (Python)

Line Code Overall Windowed

Duration Duration

Start #! usr/bin/python 8.71% 3.40%

Input word = input(’Please inser a phrase: ’) 4.87% 4.49%

Replace x = word.replace("","") 7.54% 9.10%

Reversed* y = ’ ’.join(reversed(x)) 17.17% 28.72%

If if (x.lower() == y.lower()): 21.12% 29.41%

PrintPos print(’{} is a palindrome’.format(word)) 16.63% 13.74%

PrintNeg
else:

34.96 23.93
print (’{} is not a palindrome’.format(word))
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Next, we analyze the distributions of Stimulus 1 (Python) shown in Table 8. First, we see that the line containing
the bug, Reversed, was looked at for a higher percentage of time in the windowed context. While the AOIs
immediately before and after the line containing the bug are looked at with a higher percentage of ixation
duration in the windowed dataset, the diference is not as pronounced as in the line immediately following it.
However, we still see that the ixation duration of the ixations before looking at the line containing the bug is
higher on the adjacent lines than the overall duration during the task.

5.4.3 Observations from the Alpscarfs. Looking closer into the participants’ scan patterns in Figure 5 and 6, in
which the AOI of the line containing the bug is in the color red, we can see that the line contained the bug was
more frequently ixated on in the Python bug ixing task. Figure 6 shows that P01, P03, P04, P05, P09, P10, and
P14 all looked at the line containing the bug at the beginning of the Python bug ixing task, and they frequently
revisited that AOI until the end of the task, indicating the importance of the line to the readers. The Alpscarf
also shows that the participants did not necessarily read the Python code in order, and they went back and forth
between the diferent lines many times.

In the C++ bug ixing task, as seen in Figure 5, we can see diferent patterns in participants who did not answer
the task correctly. We can see a more chronological reading pattern in some participants reading the C++ bug
ixing code (P01, P02, P03, P4, P14) compared to Python. We do not see a similar pattern in all the participants
who solved the task correctly, as some visited the lines in the order they were written, and some did not. Out of
the participants who answered incorrectly, P01 and P13 ixated on the line containing the bug a few times at the
beginning of the task, but the ixations were very short. In particular, P01 did not go back to the line containing
the bug at all. Both P07 and P11 revisited the line containing the bug multiple times, but they did not provide the
correct answer to the task.

Finally, we compared the scan patterns of some of the individual participants across the bug ixing tasks in the
two languages. As an example, P04 worked on the C++ task in a very chronological manner, starting from the
beginning of the source code and reading it to the end, only to come back later and re-read the source again. The
same participant did not follow such a method while working on the Python task. They went back and forth
between the AOIs in the Python code and read the code multiple times, resulting in many ixations over the
buggy line. The participant answered both questions correctly, indicating that either the type of bug required
longer ixations in Python or that both methods of code reading work well for this particular participant. As
another example, P13, who answered the C++ task incorrectly and the Python task correctly, read the C++ code
lines more in the order they were written but chose another approach for reading the Python code. We can also
see longer ixations from P13 on the buggy line in the Python task but infrequent and shorter ixations in the
buggy line in the C++ task.

Overall, even though we could not ind a very clear pattern in the scan patterns of the participants, comparing
the patterns still provided some insight into the individuals’ choices and reading patterns. It is possible that these
observations account for the individual diferences that occur in each person as they are building the mental
model for the programs.

RQ3 Finding: The results show us that the participants pay the most attention to the lines surrounding the
buggy line. Most participants did not read the code linearly and they kept going back to the buggy line and the
lines surrounding it. We also observe that each participant did not necessarily follow the same reading patterns
for both Python and C++ tasks.

5.5 RQ4: Problem solving behavior in new feature tasks

Since new feature tasks, by deinition, require the students to change the code, we investigate editing behavior to
address this research question. We explain in Section 4.5.3 why eye tracking measures are not used during editing
as they are not reliably mapped to edited code and no vendor based software supports this to date. Research
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prototypes such as [22] have some support for editing (only in Atom), however, our study was not done with
their framework. We plan on using the iTrace framework for future studies as it signiicantly simpliies the
mapping of gaze data on tokens [23, 84]. Similar to RQ3, this research question is exploratory in nature and does
not have a formal hypothesis. Table 9 shows the diferent metrics used in RQ4 and the results of the statistical
tests comparing them.

Table 9. Metrics Used In RQ4

Language Metric Correct Incorrect �-value Efect Size

Python Percent Time Till First Edit 13.44% 44.10% 0.0146* -0.7460

Total Time Till First Edit 107.09 sec. 177.71 sec. 0.0195* -0.7143

Lines Added 9.2222 4.2857 0.0186* 0.7143

Conidence Level 4.0000 2.4286 0.0045* 0.7143

Diiculty 1.7778 2.4286 0.1005 -0.4762

Participant Count 7 7

C++ Percent Time Till First Edit 23.65% 91.75% 0.0114* -1.0000

Total Time Till First Edit 122.35 sec. 333.77 sec. 0.0115* -1.0000

Lines Added 7.8333 0.0000 0.0108* 1.0000

Conidence Level 3.6667 1.0000 0.0054* 1.0000

Diiculty 1.9167 2.0000 0.9367 -0.0556

Participant Count 11 3

* � < 0.05

5.5.1 Time to First Edit. To investigate the editing behavior of the participants in the feature addition task, the
irst metric considered is the time until the irst edit of the source code. Before participants can add a feature,
they must understand and comprehend the program. While they don’t need to understand the entirety of the
program to add a feature, they must have familiarity with the source code and know what code needs to be added
and where it needs to be added. For Stimulus 3 using Python, we found that participants who correctly completed
the feature addition task waited 107.09 seconds on average before making their irst edit, while the participants
who failed to correctly complete the feature addition task waited 177.71 seconds on average. This diference was
statistically signiicant according to a Wilcoxon test (� = 0.0195) with a large efect size according to its Clif’s
Delta (� = 0.7143).

For Stimulus 4 using C++, we found that participants who correctly completed the feature addition task waited
122.35.09 seconds on average before making their irst edit, while participants who failed to correctly complete
the feature addition task waited 333.77 seconds on average. This diference was statistically signiicant according
to a Wilcoxon test (� = 0.0115) with a large efect size according to its Clif’s Delta (� = 1.00).

In order to adjust for the total time that the feature addition task took, we also compared the time until the irst
edit in terms of percentage of total time (TTFE Percentage). For Stimulus 3 (Python), we found that, on average,
participants who correctly completed the feature addition had 13.44% of the total time pass before making the
irst edit, and participants with an incorrect solution had 44.10% of the total time pass before making the irst
edit. This diference was statistically signiicant according to a Wilcoxon test (� = 0.0146) with a large efect size
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according to its Clif’s Delta (� = 0.7460). For Stimulus 4 (C++), we found that, on average, participants who
correctly completed the feature addition had 23.65% of the total time passed before making the irst edit, and
participants with an incorrect solution had 91.75% of the total time passed before making the irst edit. This
diference was statistically signiicant according to a Wilcoxon test (� = 0.0114) with a large efect size according
to its Clif’s Delta (� = 1.0000).

5.5.2 Added Lines. Another aspect of feature addition to investigate is the number of lines added to the source
code. We found that the number of lines added to the source code difered between participants with a correct
solution and participants with an incorrect solution. For Stimulus 3 (Python), participants with a correctly
implemented solution added an average of 9.22 lines to the source code, while participants with an incorrectly
implemented solution added an average of 4.28 lines to the source code. This diference was statistically signiicant
according to a Wilcoxon test (� = 0.0186) with a large efect size according to its Clif’s Delta (� = 0.714). Of the
seven trials that resulted in an incorrectly implemented feature addition task, three solutions did not add any
lines to the source code, one added 12 lines, while the remaining three added six lines.

For Stimulus 4 (C++), participants with a correctly implemented solution added an average of 7.83 lines to the
source code, while participants with an incorrectly implemented solution did not add any lines to the source
code. This diference was statistically signiicant according to a Wilcoxon test (� = 0.0108) with a large efect size
according to its Clif’s Delta (� = 1.0000). Only three participants failed to complete the task, two of whom did
not make any attempts to change the source code.
RQ4 Finding: Results show signiicant diferences between the editing related metrics between the two

groups of participants with correct and incorrect answers to the feature addition task. We observe that the
participants who make an edit in the earlier stages of working on the task are more likely to answer the question
correctly. The participants with correct answers also add more lines to the code.

5.6 Threats to Validity

We discuss the possible threats to validity for internal, external, construct, and conclusion and state how we tried
to mitigate them.

Internal validity: While we do compare tasks based on the language and task type to determine if language and
task type have an efect on eye movement patterns of programmers, it is possible for a diferent but comparable
task to have a diferent diiculty level to a certain programmer, meaning that even if we present equally diicult
but diferent tasks some programmers may ind one task to be more diicult for them to complete. In addition,
we tried to have bug ixing tasks and feature addition tasks have a similar level of diiculty. However, we do not
claim that these are representative of all bug ix and feature addition tasks.

External validity: For external validity, the small size of the programs used may limit the generalizability of our
results. In addition, our participants were mainly students. Because of this, our results may not generalize to a
larger population of programmers, including professionals.

Construct validity: Addressing construct validity, we used some thresholds in our analysis. For example, in RQ3,
we looked at the irst ive ixations before any ixation on the line containing the bug. We also chose to use ten
segments in the bug localization timeline. Increasing the segment count will provide additional granularity, but
the small sample count may cause gaps in the dataset to appear. We believe that ten segments balance these two
goals for our purposes. In RQ4, we used the time until the irst edit as a proxy for when participants were done
understanding the program and began to add a feature. However, a participant can begin adding a feature and
continue reading the program for comprehension after editing has begun. In RQ3, we looked at the distribution
of ixation duration over the AOIs of the source code. These AOIs are mostly line based AOIs, but some closely
related lines were grouped together as a single chunk. Chunk based analysis has been conducted in previous
studies [56], but the decision over which lines to group together can inluence the analysis. We mitigate this by
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only directly comparing the distribution of ixation durations over AOIs of the same task. These source code
AOIs are also only tracked before an edit occurs. To mitigate this, we only used the source code AOIs for the bug
localization part of the bug ixing tasks which should occur in its entirety before they attempt to ix the bug.

Conclusion validity: Finally, for conclusion validity, we used the appropriate statistical tests for our inferential
statistics.

6 DISCUSSION AND IMPLICATIONS

In this paper, we looked at the diferences in eye movement behaviors in C++ and Python in task types of ixing
a bug and adding a new feature.
We found that while working on bug ixing tasks participants had signiicantly more ixations per character

count of code than when they worked on feature addition tasks. However, regarding the absolute number of
ixations, the bug ixing tasks had signiicantly fewer ixations as the tasks were completed in a shorter amount of
time. We also found that bug ixing tasks had an average ixation duration signiicantly longer than the average
ixation duration for feature addition tasks. We found no signiicant diferences in the total ixation count or
duration when adjusted for the character counts in the stimuli between tasks written in Python and tasks written
in C++. This shows that for the overall ixation metrics that we measured, the task type is more important for
determining these metrics than the language the task is written in.
For the bug ixing tasks, we found several similarities in the navigation behavior during the bug localization

phase of the task. First, we found that after the irst 20% of the bug localization phase, a decrease in the percentage
of time spent ixating on the line containing the bug was observed for C++. There are a few possible explanations
for this behavior. The irst is that a large portion of the time was not spent locating the bug, but instead, it was
spent on understanding the behavior of the program. After they understand what the program is supposed to do,
the bug becomes easier to spot and they spend little time looking for the bug. The second explanation is that
they located the potential bug early in the bug localization task and spent the remaining time verifying that the
line was indeed a bug by reading the rest of the code. In addition to this behavior, we also saw that participants
often looked at lines that were physically close to the line containing the bug before looking at the bug and quite
often regressed back to the line containing the bug from the AOI after it. In Python, however, there were more
ixations on the buggy line during the middle and latter part of the session for a majority of the participants.
This is in direct contrast to what was observed in C++. This indicates that choice of language plays a role in how
students read the code looking for the buggy line.
For the feature addition tasks, we found that participants who correctly implemented the task added more

lines of code to the source code and were quicker to make their irst edit to the source code than participants who
incorrectly implemented it. While the number of lines added is biased against the participants with incorrect
solutions, as several incorrect solutions added no additional lines to the code, the time till the irst edit is still
a clear divider. It seems to indicate that the participants who completed the feature addition task were able to
identify where to start adding the feature quicker or iterate over potential solutions quicker. This diference was
seen in both the Python and C++ tasks. We also found that feature addition tasks had signiicantly more ixations
and ixation time spent inside the Requirements AOI. Since participants needed to refer to the requirements
located inside this AOI to correctly implement the new feature, it makes sense that more ixations and ixation
time were needed for these feature addition tasks.

6.1 Relation to Prior Work

With respect to RQ1, which tried to determine diferences in programming languages, we did indeed see a
diference based on the normalized total ixation count between C++ and Python. Students spent more time
looking at the Console output when performing Python tasks. We do not believe this is due to noise in the data
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because both Python and C++ had I/O operations (See Table 4.3). We believe that it might be possible that the
Python programs were easier to change and the students got immediate feedback in the console. The data seems
to support this assumption. This result seems to align with Tshukudu and Cutts [74], where diferent models
were needed to transition between programming languages. Murphy et al. also point to the Console view being
selected the most during their collection of interaction data from Java developers in Eclipse [44].
With respect to RQ2-RQ4, which tried to determine diferences in task type, the results show signiicant

diferences in the Total Fixation Count and Total Fixation Duration overall (normalized per character), indicating
that participants had more frequent and longer normalized ixations overall in the bug ixing tasks. These results
align with what was reported by Cunningham et al. [18], where they found the behaviors to change when
diferent task types are used. One possible reason why the ixation count might be higher for bug ixing is because
the reading strategy when looking for bugs is very diferent from reading code just to understand what it is doing.
When inding and ixing bugs, one zeroes into certain parts and traces and re-reads them.

With respect to RQ3 and bug ixing behavior, ixations are found closer to the line containing the bug right
before they look at buggy lines. This behavior is also found in prior work by Peterson et al. [52], indicating that
participants view related lines together and using chunking as a mechanism to map eye gazes is replicable in
other studies and tasks as well.

Finally, with RQ4, we found that for both C++ and Python, participants could identify where to start adding a
feature (noted by the time to irst edit) quicker and potentially iterate over solutions to solve the task correctly.
Brown et al. collected ive years of programmer activity data in a Java IDE, namely BlueJ [13]. Part of this data
includes edit sequences of novices. However, they state that no study has made use of the code execution and
code editing sequences as of yet. It would be interesting to see how their results relate to what we found in our
study with respect to the time to irst edit and task performance. This is left as a future exercise. The individual
diferences we see in our study are also reported in Jbara et al. [28].

6.2 Implications for CS Education Researchers

This is one of the irst eye tracking studies that look at the same individual performing two task types in two
programming languages. None of the prior work used the visualization plots shown in Figures 5 and 6. This
was a new form of data visualization and analysis that is richer than what is presented in Uwano et al. [77]
and Sharif et al. [63]. In the future, researchers looking at scan patterns can compare not just lines but chunks
of lines across time. This is important because sometimes, a programming plan [55] or beacon [12, 35] is not
necessarily encapsulated in just one line. We believe this method of comparison opens up new avenues of research
for comparing studies with each other in a more scalable way. When analyzing eye tracking studies, it is also
important to account for individual diferences that are quite common. We see this in our analysis of the scarfplots
in our study but also in other studies in the literature, such as in Jbara et al. [28]. CS education researchers can
also beneit from these results by building better tools that guide novices in recognizing bugs, thereby advancing
the state of the art of teaching novices.
The fact that we have noticed diferences in task type within the same individual tells us that the type of

task is extremely important, and as education researchers, we should be studying all the diferent types of tasks
that developers perform on a daily basis. We name a few, such as refactoring, summarization, bug ixing, new
feature addition, testing, and code review. Eye tracking has only mainly studied summarization, with a few
papers looking into bug localization and only one on code review [11]. In addition, most work is done on the Java
programming language. It is time to start branching out to other languages, using more realistic tasks, and also
multiple task types with varying complexities [3, 21]. Especially now that we have eye tracking frameworks such
as iTrace [23, 84] that make the running and mapping of gazes to tokens relatively easy and straightforward.
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Kersten and Murphy provide a task context model to help with developer productivity [32]. The context is
created by monitoring a programmer’s activity and extracting structural relationships between program artifacts.
CS education researchers can consider doing something similar with eye tracking data where when enabled,
the eyes are tracked while the programmer is ixing a bug. Later, these scan paths can eventually be used to
replay the thought process to the same or another developer via visualizations. Such future tools would help
recommendation systems as well, where eye gaze history could be used to recommend areas a student should
look at, based on how they have viewed it in the past so as to keep their mental model in sync with their
prior debugging session. Given the advancement in eye tracking infrastructure [23, 84] and the afordability of
research-grade trackers, this is not a far fetched goal.

6.3 Implications for CS Educators - Teaching

Our indings show a more substantial diference in eye movement patterns in diferent task types than in various
programming languages. This inding indicates that the comprehension patterns difer regarding the goal of
the task at hand and suggests a need for inding diferent teaching techniques for solving various types of
programming tasks, no matter what the programming language taught to the students is. Further investigation
into diferences of programming languages versus diferences of tasks on learning and comprehension, can ofer
some insight into łWhich programming languages should we teach to students?" [48] and can help in determining
what factors other than language are the most important in program comprehension.

Due to the comprehension pattern diferences between tasks, we also suggest that instructors try to include
diferent tasks in programming homework (e.g. bug ixing, adding features, and summarization) to improve
diferent program comprehension skills in the students, instead of only focusing on full implementation of
speciic problems. Students need more practice reading code that is not written by them so they can practice
their program comprehension skills and learn when to switch back and forth between diferent models of
comprehension [12, 35, 50, 58, 79]. It will also prove to be more useful in their future careers, as software
developers do incremental work on partial code similar to subgoals [43] instead of always writing code from
scratch.

Finally, CS educators can better support student debugging if they know what novice students typically look at
during various types of tasks. They can also actively teach students not to fear editing the code early on, because
we see a correlation between time to edit and accuracy in feature addition task performance.

7 CONCLUSIONS AND FUTURE WORK

The paper presents an eye tracking study on how the type of task (bug ix and new feature addition) and language
(C++ vs. Python) afect student programmer behavior. We found that the participants had signiicantly longer
average ixation duration and total ixation duration adjusted for source code length during bug ixing tasks
compared to the feature addition tasks. We also ind that the total ixation duration adjusted for source code
length was signiicantly higher during tasks done in Python than in C++, but the efect was not as pronounced.
We found that during the bug ixing task in C++ many participants read the line containing the bug early in the
task and then continued to other parts of the code before ultimately returning to the line containing the bug. In
Python however, they read the buggy line many times in the middle or later in the session. We also found that
participants looked at lines next to the line containing the bug before looking at the line containing the bug more
often than the overall distribution and that they often regressed back to the line containing the bug from the
lines following it. Finally, we found that participants who successfully completed a feature addition task took
signiicantly less time to make the irst edit to the source code.
As part of future work, we plan on conducting a study using modern eye-tracking frameworks such as

iTrace [23, 84] in order to see how participants traverse through larger and more realistic open source systems
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written in Python, Java, and C++. This would allow us to see if our results scale to a much larger realistic setting.
We would also like to vary additional factors like task complexity within each task type.
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